
WWW: www.resolute-eu.org Page 1 of 109
Email: infores@resolute-eu.org

CRAMSS APPLICATION

Project Title RESOLUTE

Project number 653460

 Deliverable number D5.3

Version 9.1

State Final

Confidentially Level Public

WP contributing to the

Deliverable
WP5

Contractual Date of Delivery M24 (30/04/2017)

Finally approved by coordinator 19-06-2017

Actual Date of Delivery 19-06-2017

Authors
Mr. Alexandros Zamichos; Dr. Anastasios Drosou; Mr. Ioannis Symeonidis; Mr.

Aristotelis Spiliotis

Email drosou@iti.gr

Affiliation CERTH-ITI

Contributors
CERTH: Dr. Ilias Kalamaras; Mr. Athanasios Tryferidis; Mr. Triantafyllos Tsirelis;

FhG: Jan-Paul; Leuteritz; CMR: A. Candelieri; UNIFI: E. Bellini; P. Nesi,

SWARCO: R. Di Vincenzo; THALES A. Grifoni

mailto:drosou@iti.gr

WWW: www.resolute-eu.org Page 2 of 109
Email: infores@resolute-eu.org

Funded by the Horizon 2020

Framework Programme of the European Union

Project Context

Work package WP5: Platform front-end and end user application

Task T5.2: CRAMSS application

Dependencies WP5; T5.3; T5.4

Contributors and Reviewers

Contributors Contributors Reviewers

A. Drosou (CERTH) I. Symeonidis(CERTH) Manfred Dangelmaier (FhG)

A. Zamichos (CERTH) A. Spiliotis (CERTH) Emy Apostolopoulou (ATTIKO)

T. Kalamaras (CERTH) J.P. Leuteritz (FhG)

A. Tryferidis (CERTH) A. Candelieri (CMR)

T. Tsirelis (CERTH) E. Bellini (UNIFI)

Manfred Dangelmaier (FhG) R. Di Vincenzo (SWARCO)

Emy Apostolopoulou (ATTIKO) A. Grifoni (THALES)

Version History

Version Date Authors Sections Affected

V0 4/4/2017 A. Drosou, A. Tryferidis All – ToC proposal

V1 11/5/2017 A. Drosou, A Zamichos, I. Kalamaras, A.

Spiliotis, I. Symeonidis

All -1st draft circulated for input

contribution

V2 20/5/2017 A. Drosou, A Zamichos, I.

Kalamaras, A. Tryferidis, T.

Tsirelis

1, 2, 3, 8

V3 29/5/2017 E. Bellini, P. Nesi 6, 7

WWW: www.resolute-eu.org Page 3 of 109
Email: infores@resolute-eu.org

V4 4/6/2017 A. Candelieri Section 3.6.2.1.3

V5 5/6/2017 R. Di Vincenzo 4

V6 12/6/2017 A. Drosou, A. Tryferidis, Jan-Paul

Leuteritz

All – Pre-final version

V7 13/6/17 A. Grifoni 5

V8 13/6/17 A. Drosou, T. Tsirelis, I.

Symeonidis

All – Final for internal review

V9.1 16-6-17 P. Nesi all

Abbreviations

Abbreviation Full term

CCRP Capacity Constrained Route Planner

CRAMSS Collaborative Resilience Assessment and Management Support System

CSM Contextual Simulation Module

CSV Comma-Separated Values

ERMG European Resilience Management Guidelines

ESSMA Emergency Support smart mobile app

GBTA Game-based Training app

GIS Geographic Information System

GS Graph-based Simulator

GUI Graphical User Interface

SAVE ME System and actions for vehicles and transportation hubs to support disaster mitigation

and evacuation (SAVE ME project; Grant Agreement No. 234027 of the European

Commission)

TSM Traffic Simulation Module

UI User Interface

UTS Urban Transport System(s)

Gender writing statement

This deliverable contains gender-specific terms. They have been avoided where possible. Where not possible,

the male and the female form were used at random, for reasons of shortness and readability. In all cases, it is

assumed that the respective person could be of any gender.

WWW: www.resolute-eu.org Page 4 of 109
Email: infores@resolute-eu.org

Copyright Statement – Restricted Content

This document does not represent the opinion of the European Community, and the European Community is not

responsible for any use that might be made of its content. This restricted deliverable is provided to the

RESOLUTE community ONLY. The distribution of this document to people outside the RESOLUTE consortium

has to be authorized by the Coordinator ONLY.

WWW: www.resolute-eu.org Page 5 of 109
Email: infores@resolute-eu.org

Table of Content

Project Context .. 2

Contributors and Reviewers .. 2

Version History .. 2

Abbreviations .. 3

Copyright Statement – Restricted Content .. 4

Table of Content .. 5

List of Figures .. 8

List of Tables ... 11

1 Introduction ... 12

1.1 Scope of this Deliverable ... 12

1.2 Relation to other Deliverables .. 12

1.3 Deliverable Structure.. 12

2 CRAMSS Overview .. 13

2.1 Introduction .. 13

2.2 Users and Roles .. 13

2.3 Application Objectives .. 14

2.4 CRAMSS Architecture.. 15

3 EVACUATION DSS .. 17

3.1 Introduction .. 17

3.2 Supporting resilience.. 17

3.3 State of the art ... 18

3.3.1 Evacuation related Decision Supporting Systems ... 18

3.3.2 Evacuation Planning Algorithms .. 18

3.4 Evacuation DSS Architecture ... 19

3.5 Data Sources & Data processed by eDSS ... 20

3.5.1 Urban Road Network & Maps .. 20

3.5.1.1 Firenze Map .. 20

3.5.1.2 Athens Map ... 23

3.6 eDSS Back-End Modules ... 25

3.6.1 Network Representation Module ... 25

3.6.2 Graph-based Simulator .. 26

3.6.2.1 Contextual Simulation Module .. 26

3.6.2.1.1 Marking a hazardous Area ... 27

3.6.2.1.2 Weather Risk Estimation from Application Framework .. 27

WWW: www.resolute-eu.org Page 6 of 109
Email: infores@resolute-eu.org

3.6.2.1.3 Network Vulnerability Estimation from Application Framework .. 28

3.6.2.2 Traffic simulation Module .. 30

3.6.3 Evacuation Manager .. 30

3.6.3.1 Evacuation Planning Algorithms ... 30

3.6.3.2 eDSS Modes & Priorities .. 32

3.7 eDSS User Interface .. 33

3.7.1 Monitoring activities ... 34

3.7.2 Human Machine Interaction services of the eDSS .. 39

3.7.2.1 Exclude/Include a road ... 39

3.7.2.2 Mark Area in danger ... 39

3.7.3 Routing Procedures Management ... 40

3.7.3.1 Evacuation Procedure ... 40

3.7.3.2 Collaborative Rescue Procedure .. 43

3.7.4 Communication with ESSMA users ... 45

3.7.4.1 Chat communication ... 45

3.7.4.2 Live Updates ... 45

3.7.5 User setting & Notifications .. 46

4 UTM DSS .. 47

4.1 UTM Strategies .. 48

4.2 UTM Architecture ... 48

4.3 Component interface .. 49

4.4 Component API .. 49

4.5 Retrieve measures for an object .. 49

4.6 ESB interface ... 49

5 UPT DSS .. 50

5.1 Architecture .. 50

5.1.1 Component interface ... 51

5.1.2 Component API ... 51

5.1.2.1 UPT DSS Simulator Events Interface ... 51

5.1.2.2 UPT DSS WiFi Connector Interface .. 52

6 Resilience Dashboard ... 53

6.1 RESOLUTE DASHBOARD UI ... 53

6.1.1 ESB column ... 54

6.1.2 Environmental column ... 54

6.1.3 Mobility column .. 54

WWW: www.resolute-eu.org Page 7 of 109
Email: infores@resolute-eu.org

6.1.4 Resources column ... 55

6.1.5 Twitter Vigilance .. 55

6.1.6 Service map ... 56

6.1.7 Real time people concentration ... 57

6.1.8 Territory usage... 57

7 Resilience DS TOOL .. 59

7.1 Tool Architecture .. 59

7.2 Database Structure .. 61

7.3 User Typologies ... 65

7.4 Server Side .. 68

7.5 Client Side .. 77

7.6 Resilience DS UI .. 81

7.6.1 Resilience DS Features. .. 81

7.6.2 Analysis and comparison with other tools. ... 88

8 Conclusions .. 92

Appendices .. 94

Annex I .. 94

Annex II ... 98

Annex III .. 99

Annex IV.. 102

Annex V... 103

References .. 108

WWW: www.resolute-eu.org Page 8 of 109
Email: infores@resolute-eu.org

List of Figures

Figure 1. CRAMSS users & roles .. 14

Figure 2: RESOLUTE's architecture with CRAMSS highlighted .. 16

Figure 3. Evacuation DSS architecture .. 19

Figure 4: Map of Athens expressed in nodes and edges .. 23

Figure 5: Real word and graph representation of an area ... 25

Figure 6: Graph based simulator ... 26

Figure 7: Graph weights adjustment regarding the emergent event .. 27

Figure 8: Graph affection based on flood risk estimation .. 28

Figure 9 Data model of the network analysis result: message exchanged through the ESB follow this model. 29

Figure 10 A sample of response from the network analysis module ... 29

Figure 11. Mock-up of the eDSS UI starting page ... 34

Figure 12: eDSS UI starting page .. 35

Figure 13. Illustration of the selected, from the Map Layer, information on the map. By clicking on a marker more

information regarding the represented item can be retrieved. ... 37

Figure 14. Real Time Data of Sensor .. 37

Figure 15. Widget displaying the ESSMA users in visual clusters based on their common attributes. 37

Figure 16: Road network representation and information display of a specific road. .. 39

Figure 17: “Add Area in Danger” operator’s view. ... 39

Figure 18: Set additional information about an Area in Danger (left). View of the information by clicking over the

marked area (right). ... 40

Figure 19. Sequence diagram of the evacuation procedure. ... 40

Figure 20: The evacuation procedure is initiated by the operator .. 41

Figure 21: Evacuation area marked by the operator ... 41

Figure 22: Safe points defined by the operator .. 41

Figure 23: Nodes containing crowd to evacuated defined by the operator .. 42

Figure 24: Illustration of the computed evacuation plan over the map. ... 42

Figure 25: a) The proposed evacuation plan sent to the CDM (left). b) The CDM approves the evacuation plan

(right) ... 43

Figure 26. Sequence diagram of the collaborative rescue procedure ... 43

Figure 27: ESSMA SOS button functionality .. 43

Figure 28: Users that have called the ESSMA’s SOS functionality are displayed over the map (left). The operator

initiates the collaborative rescue procedure (right). ... 44

Figure 115. Message sent to the helpers asking them if they are available to help .. 44

Figure 30: Available users and users that need help are displayed on map, as well as a button that enables the

operator to request for collaborative planning (left). The calculated plan displayed on the map and the update of

each user’s status (right). .. 45

Figure 31: Chat communication ... 46

Figure 32: Chat notification .. 46

Figure 33. Live Updates View .. 46

Figure 34 - UTM DSS Component Architecture .. 48

Figure 35: UPT Architecture .. 50

Figure 36: UPT DSS Wi-Fi Resolute connector ... 51

Figure 37. Dashboard UI ... 53

Figure 38. Layout strategy of Dashboard .. 54

Figure 39. ESB column .. 55

file:///D:/PROJECTS/RESOLUTE/WP5/T5.2/Deliverable/D5.3/Working%20Doc/%5bRESOLUTE%5d%20D5.3%20-%20CRAMSS%20application_v11.docx%23_Toc485575102

WWW: www.resolute-eu.org Page 9 of 109
Email: infores@resolute-eu.org

Figure 40. Environmental column .. 55

Figure 41. Mobility column ... 55

Figure 42. Resources column .. 55

Figure 43. Twitter Vigilance ... 55

Figure 44 - Service map .. 57

Figure 45 - Rea time people presence .. 57

Figure 46 - Territory usage .. 58

Figure 47. Resilience DS Architecture ... 60

Figure 48. FMV Example with 4 functions: 2 foreground (A, B) and 2 Background (C, D). 62

Figure 49. Relation between the classes Model and Function. ... 64

Figure 50. Relation between Function and Aspect. ... 64

Figure 51. Model instances data management. ... 65

Figure 52. Resolute_DB complete database structure. ... 65

Figure 53. Guests functionalities ... 67

Figure 54. Advanced user's functionalities. ... 67

Figure 55. Decision Maker available actions. .. 67

Figure 56. Administrator's functions. The same of DM, plus the users managment. ... 68

Figure 57. FRAM export example with three functions, and a cycle. ... 69

Figure 58. XML exported, relative to the Rescue management FRAM’s Model. ... 70

Figure 59. SmartDS's tree for the Rescue Example. ... 71

Figure 60. ResoluteDS Server schema ... 72

Figure 61. Sequence Diagram for loading a model from the relational DB. ... 74

Figure 62. Sequence Diagram for Save the model in the DB. ... 74

Figure 63. UML Diagram for the User Module. .. 75

Figure 64. Sequence Diagram for register a new user. ... 76

Figure 65. Registration of a new user by the administrator. .. 76

Figure 66. Function’s SVG structure.. 77

Figure 67. SVG code for an arch. The orange inputs of the functions represent missed aspects (Aspects with only

the target or the source). ... 78

Figure 68. SVG code for a group. .. 78

Figure 69. ResoluteDS project’s files... 80

Figure 70. ResilienceDS, JavaScript files that provides all the tool's functions. .. 80

Figure 71. Resilience DS: FRAM and Macro FRAM Functional Tool editor. A simple example with 8 functions and

2 groups... 81

Figure 72. Function in Resilience DS. The Window reports the function's info (for the green one): name,

description, colour and the aspects divided by typology. The aspects with source or target undefined are

highlighted and a label is shown on click. .. 82

Figure 73. The Resilience DS creation of an aspect. .. 83

Figure 74. Group Creation. In the example is created the group 'VVF Management' that handle the fire brigade

actions. .. 84

Figure 75. Add functions into a group. In the first frame (-I- on the top-left) is dragged the function ‘115 Actions’

into the group. During the move for each group is showed a hull around the group and when a functions enter the

hull is linked with the group to ... 84

Figure 76. Group’s Options. -1- and -2- reports respectively the number of links and functions for the group. -3-

are the edit and delete options. Clicking on edit, the editing window is displayed and reports all the info of the

group: name, description, colour, f .. 85

WWW: www.resolute-eu.org Page 10 of 109
Email: infores@resolute-eu.org

Figure 77. ERMG model. This is the model imported from FMV as it is. The function’s properties are maintained;

name, colour, description and also the position in the graph. .. 85

Figure 78. ERMG model with groups... 86

Figure 79. How an Instance looks like in ResilienceDS. The wave on a function indicates that is effected by

variability.. 86

Figure 128 List of models for the user logged in. ... 86

Figure 81. Options for functions and groups. For the actions we have, starting from the left: edit and delete. For

the groups: edit, delete and show. On the right are reported the elements’ options during the visualization: info for

functions and info and show fo .. 87

Figure 82. User’s panel. Over the logout option there is the admin panel with the information about the user in the

left frame. In the centre is possible to modify own credential, like email, name etc. The third section is only

available for the admins and permit ... 87

Figure 126 Right Menu for the visualization. ... 88

Figure 84. Bottom menu with all the information about a model loaded. ... 88

Figure 85. Menu for models management. The first group of icons, from left to right, are for: collapse the models

list, edit a model/instance, delete a model/instance, import an FMV’s project and export to SmartDS a function for

measurement of probabilities. The second group of icons represent: undo-redo actions, add new function, add

new group. ... 88

Figure 86. List of models present in the DB. .. 104

Figure 87. Response to a model creation. ... 104

Figure 88. Model returned from the server to the client. .. 105

Figure 89. List of the instances created. .. 106

Figure 90. Response for a specific model instance. .. 107

file:///D:/PROJECTS/RESOLUTE/WP5/T5.2/Deliverable/D5.3/Working%20Doc/%5bRESOLUTE%5d%20D5.3%20-%20CRAMSS%20application_v11.docx%23_Toc485575153
file:///D:/PROJECTS/RESOLUTE/WP5/T5.2/Deliverable/D5.3/Working%20Doc/%5bRESOLUTE%5d%20D5.3%20-%20CRAMSS%20application_v11.docx%23_Toc485575156

WWW: www.resolute-eu.org Page 11 of 109
Email: infores@resolute-eu.org

List of Tables

Table 1: Input Data .. 20

Table 2: Available parameters of Firenze’s roads ... 20

Table 3: Available parameters of Athens’s roads .. 23

Table 4: Average speeds for the roads of Athens according to their classification .. 24

Table 5: Information displayed on the map .. 35

Table 6. The different available map views of the eDSS UI interactive map ... 38

Table 7. User's Functionalities for manage the models. .. 66

Table 8. Possible user's actions on the instances. .. 66

Table 9. Application functionalities for the typologies of users. ... 67

Table 10. Comparison table between main features of Resilience DS and FMV .. 88

Table 11. Resilience DS, Kleef (SimPy) and CAMBRENSIS (iDEPEND) differences. .. 89

WWW: www.resolute-eu.org Page 12 of 109
Email: infores@resolute-eu.org

1 INTRODUCTION

1.1 Scope of this Deliverable

The scope of this deliverable is to present the result of Task 5.2 which is the CRAMSS (Collaborative Resilience

Assessment and Management Support System) application. The CRAMSS has been implemented considering

the ERMG guidelines developed in WP3 and it is primarily a concept or an idea of a collaborative workspace in

which DSS operators of the urban transport system (UTS) can share their outputs of or information about their

work among each other. In this direction, three front-end applications have been implemented that allow DSS

operators to communicate, composing CRAMMS’s front-end interface, namely: Dashboard, Evacuation DSS

(eDSS), and Resilience DS Tool. The eDSS and the Resilience DS Tool also hold a back-end which in

conjunction with information derived from other DSSs (i.e. UTM (Urban Traffic Management), UPT (Urban Public

Transport)), the Emergency Support Smart Mobile App (ESSMA), and/or the Data Management Layer provide

information to the front-end. The secure exchange of data among the CRAMSS’s components is achieved

utilizing the ESB (Enterprise Service Bus) described in D4.5.

1.2 Relation to other Deliverables

The outcomes of the Task 5.2 “CRAMSS application” are strictly connected with the backend implementation and

integration Task 4.1, Task 4.3, Task 4.5 and with the available data identified in Task4.2 and the produced data of

Task 4.4. Moreover, the Task5.2 is related with the outcomes of the Task5.1 where the designs for the interface

of the CRAMSS application were developed. The produced designs were used as the basis for the development

of CRAMSS’s interface. Finally, the task is related with Task 5.3, which concerns the development of the

Emergency Support Smart Mobile App (ESSMA), and the outcome of Task 5.4, which is the Game-based

Training app.

1.3 Deliverable Structure

The deliverable is structured and organized as follows. In the second section, the overview of the CRAMSS is

described. The section starts with a general description of what CRAMSS is and continues with the description of

the involved users and their roles. Next, the objectives of the application are analysed and the application’s

features that cover these objectives are discussed in detail. Section 2 closes by providing the CRAMSS

architecture and locating it within RESOLUTE’s overall architecture. The next five sections are dedicated to the

detailed description of the core components of the CRAMSS, namely: the EVACUATION DSS, the UTM DSS, the

UPT DSS, the Resilience Dashboard and the Resilience DS TOOL. Each section details the functional

description of the corresponding component and its outcomes. Finally, section 8 concludes the deliverable and

gives a brief summary of the most important aspects.

WWW: www.resolute-eu.org Page 13 of 109
Email: infores@resolute-eu.org

2 CRAMSS OVERVIEW

2.1 Introduction

The main purpose of the CRAMSS as it was reported in D5.1 is “to support reference actors at the UTS, such as

infrastructure managers, with their decision making under both, standard operating conditions and emergency

conditions. The CRAMSS displays information from different sources or independently running web-applications,

together with the results of the decision support”. Based on this and due to reasons that were analysed in detail in

D5.2, the CRAMSS was decided to be “primarily a concept or an idea of a collaborative workspace in which DSS

operators can share their outputs of or information about their work among each other” (D5.2 – section 2.1).

Thus, it was decided that the CRAMSS UI would consist of three different UIs (i.e. Dashboard, eDSS UI,

Resilience DS) besides a common one.

Except from the UIs (front-end), the CRAMSS is also has a backend. The backend is composed of several DSSs

(i.e. eDSS, UTM, UPT, and Resilience DS) that processes information related to the UTS, exchange this

information among them by utilizing the ESB, and provide it to the front-end. The eDSS is responsible for

calculating the optimal evacuation plan in case of great danger and provide it to the operator and to the citizens

through the ESSMAs. The UTM DSS provides traffic related information such as traffic measures; traffic events

and traffic strategies (e.g. close/open a road), while the UPT DSS provides information regarding the means of

public transport. Finally, the Resilience DS operationalizes the FRAM model in order to provide operators with an

overview of which resources are necessary for which decision, which guidelines apply to the specific decision-

making, and who are contact persons in other organizations that provide resources for one’s own decision.

The outcome information of the backend is visualised in a human-friendly manner via the front-end. Moreover, the

UIs are provided as interactive means where the operator may play an active role not only to the management of

the received information, but also to its production (e.g. evacuation planning). Thus, the front-end and the

backend of the eDSS are inseparable, as well as those of the Resilience DS tool. The UIs may also display

information coming from the data layer or the rest RESOLUTE’s components (e.g. application framework). The

Resilience Dashboard is responsible for displaying mainly information coming from the data layer, the UPT and

the UTM DSSs. The evacuation plan computed by the eDSS is also sent to the Dashboard in order to be

approved by the Central Decision Maker (CDM).

2.2 Users and Roles

The Figure 1 presents an overview of the three CRAMSS UIs (described in the previous section) and of the

involved users. As it is shown, the Resilience Dashboard and the Resilience DS tool are available for use by all

the involved DSS operators of the UTS, while the eDSS is reserved for one specific operator (eDSS operator).

Each DSS sends information to the ESB, which redistributes the information to the different instances of the

Dashboard. Regarding the use of Dashboard there are two kind of user: a) the operators/stakeholders who have

a read-only access to the data provided in the Dashboard, and b) the central decision maker (CDM), who can

read all the available data provided in the Dashboard, as well as, he/her is the final authority regarding the

evacuation of citizens. So, when the evacuation plan is produced by the eDSS it is sent to the CDM for approval.

If the CDM approves the evacuation plan, the evacuation routes are sent to the citizens through the ESSMAs.

The CDM is only one per city and may be for instance the city’s mayor. Considering the first category (the

operators), they are expected to be members of different organizations and have an individually considered

dashboard and access to the Resilience DS. A more detailed description of who the targeted operators of the

CRAMSS are can be found in D5.2.

WWW: www.resolute-eu.org Page 14 of 109
Email: infores@resolute-eu.org

In addition to the group of the operators, there also the group of the ESSMA users that communicates with the

eDSS, as Figure 1 shows. The ESSMA is a cross platform application that is addressed to every citizen that owns

a smartphone (either android or iOS). During the installation of the application, each user defines profile details as

well as his/her preference for voluntary help during emergencies. Thus, the ESSMA users can be categorized in

two sub-groups a) the non-helpers and b) the helpers (or voluntary helpers).

On the one hand, the “non-helpers” are users that are not subscribed as voluntary helpers and thus they receive

information relevant only to their self-rescue. On the other hand, the “helpers” are common citizens or

professional rescuers that are subscribed as voluntary helpers. Except from information regarding their self-

recue, the latter may also receive guidance in order to help/save other trapped/ injured people that need help. A

more detailed description of the communication between the ESSMA users and the eDSS can be found in

Section 3, as well as in D5.4.

Figure 1. CRAMSS users & roles

2.3 Application Objectives

As it has been already mentioned, the main objective of the CRAMSS is to support the UTS stakeholders to take

critical decisions under both standard and emergency conditions. According to the DOW, the CRAMSS has also

to address the following objectives:

a) Intervene in the information exchange between T4.2 & T4.4 modules & the Back-End Platform,

through the integration framework (T4.5): The front-ends of the CRAMSS are the means for

visualizing the data collected in T4.2 and the produced data of T4.4. Moreover, the back-end modules of

the CRAMSS process this information and exchange the produced knowledge by utilizing the ESB

(T4.5).

b) Adaptive and constantly learning decision support system: Due to the continuous exchange of

valuable information among the CRAMSS’s components, the system can be adapted in time to the

needs of each emergent event. For instance, when a critical event relative to the UTS occurs (e.g. car

accident) the UTM DSS can inform the eDSS so as to exclude this particular road from the calculation of

the evacuation routings, avoiding thus to guide the crowd through the affected road.

c) Real time risk assessment/detection: The data collected from the city’s sensors (e.g. traffic sensors,

river level sensors, etc.), as well as data retrieved by the application framework are used by the

CRAMSS components in order to alert the operators about emergent events. Alerts in form of

notifications are displayed through the front-end of the CRAMSS, informing the operators about the

situation and the severity of the events.

WWW: www.resolute-eu.org Page 15 of 109
Email: infores@resolute-eu.org

d) Identify individuals or groups of individuals as rescuers or to-be-rescued: The eDSS in

conjunction with the ESSMA are used for the identification of groups of individuals as rescuers or to-be-

rescued. By utilizing the smartphones’ sensors, the ESSMA provides useful information to the eDSS

regarding the location of all the ESSMA users. As it has been described in Section 0 the ESSMA users

can be categorized in helpers and non-helpers. Therefore, when there is the need for help the system

recognizes the voluntary helpers as possible rescuers. Before sending guidance to a voluntary helper

the system reassures that the user are available to help through a short communication procedure.

Regarding the to-be-rescued users, the ESSMA provides to all users a mean for calling for help when it

is necessary. Except from their location and their need for help, they can also send additional

information regarding their condition and the severity of the situation. Thus having the knowledge of the

location and the number of each group of users, the system calculates the optimal action plan.

e) Multiple (modality) Input-multiple (modality) Output (MIMO): The system receives multiple inputs

from different kind of sources (e.g. sensors, maps, smartphones, etc.) processes them and provide

multiple (modality) outputs (e.g. evacuation plan (visual), alert messages (text & sound), etc.).

f) Guidance in Emergencies: Additionally to the groups of individuals as rescuers or to-be-rescued the

system can also identify users that need to be evacuated. The operator can select/define the areas that

have to be evacuated, so as to users within these areas to receive guidance in order to exit the

hazardous areas. The system computes the optimal evacuation plan with the minimum cost for the UTS.

Depending on the type and the location of each user, they receive the corresponding guidance. The

ESSMA users that are not included in one of the aforementioned categories (e.g. non-helpers users that

are away of the areas in danger) receive information about the emergency, in order to guide them

passively not to approach the affected areas.

g) Communicate & display to users/public the optimal resilience strategies, from a set of Pareto

strategies: The CRAMSS application provides different means-applications to communicate with each

kind of user. Regarding the users-operators the UIs of the CRAMSS provides the interactive means for

bi-directional communication among users and the CRAMSS. Considering the public, they can

communicate with the CRAMSS via the ESSMA. They are able not only to receive guidance and to be

informed about the emergencies but they can also provide useful real-time information about the

condition of the emergency. The information is displayed to users in different layers of abstraction. This

means that the ESSMAs receive less or filtered information about the emergencies and the evacuation

plan (they receive only the route that they have to follow). On the contrary, the application gives the

whole view of the situation to the users-operators.

The system allows the operator to have an active role in the selection of the strategy to be sent to the public, as

for instance in the selection of the evacuation plan. Based on the operator’s actions (e.g. include/exclude a road

from the calculation of the evacuation plan, select the evacuation area, etc.) the system provides an optimal

evacuation plan. Before sending the evacuation routes to the ESSMA users, the evacuation plan is proposed to

the eDSS operator and to the CDM for approval. If they decide that the evacuation plan has to be rejected the

whole procedure can be re-initiated again, allowing the operator to change his actions. In this way, the optimal

resilience strategy is sent to public based on the operator’s decisions.

2.4 CRAMSS Architecture

As Figure 2 displays, the CRAMSS is the central component of the RESOLUTE’s architecture. It seamlessly

fuses information from different sources (e.g. data management layer, application framework, actuations

channels, etc.), providing decision support services and information to Urban Transport related authorities via the

front-end applications, facilitating thus, an efficient management of the Urban Transport System and real-time

applicable countermeasures in critical situations (e.g. evacuation planning, etc.).

WWW: www.resolute-eu.org Page 16 of 109
Email: infores@resolute-eu.org

Figure 2: RESOLUTE's architecture with CRAMSS highlighted

Referring to the back-end, the main components of the CRAMSS are the Evacuation DSS (eDSS), the UTM

(DSS), the UPT (DSS) and the FRAM and are connected as shown in Figure 2. The next chapters contain a

detailed description of each of the CRAMSS components

WWW: www.resolute-eu.org Page 17 of 109
Email: infores@resolute-eu.org

3 EVACUATION DSS

3.1 Introduction

One of the core components of the CRAMSS is the evacuation Decision Support System (eDSS). The eDSS is

the responsible module for providing evacuation planning to the evacuation responsible (eDSS operator) in

critical situations, facilitating them to take critical decisions. In order to provide optimal evacuation plans,

considering the number of the involved ones and the critical situation, the eDSS co-processes and fuses all the

available information from all the existing sources. Thus, the eDSS considers information retrieved from the Data

Management Layer, the UTM DSS, the eDSS’s front-end, as well as data retrieved from the ESSMAs. Except

from the evacuation plans the eDSS is also responsible for identifying possible individuals or groups of individuals

as rescuers or to-be-rescued, assigning the appropriate task to each and providing the corresponding guidance.

The eDSS algorithms are able to cope with optimal evacuation planning in three modes: a) personalized routing

based on user-specific profiles, b) group-wise for general public guidance and c) collaborative rescue for citizens

that are willing to help trapped or injured travellers.

Of course, all this information has to be managed and checked by an experienced person, the eDSS’s operator.

The operator is the person (or a group of people) who has to oversee and evaluate the computed tours of the

evacuation plans. The operator can interact with the whole procedure by using the eDSS’s front-end (e.g. block a

road; mark a danger area, request for evacuation planning, etc.). The computed evacuation plans are also sent to

the Central Decision Maker (CDM) (e.g. the mayor) for the final approval, adding thus another layer of evaluation.

After, and only after, the acceptation of the latter, the routes can be forwarded to either the travellers (via the

ESSMA) or to local authorities for guiding the moving population.

It should be also mentioned that after sending the evacuation plan to the users, even if the eDSS keeps tracking

of their location, it does not check whether a user follows the proposed routing. Furthermore, it does not check

whether a user does or does not arrive at the end- safe point.

The eDSS is composed by a front-end and a back-end. The front end of the eDSS was developed in AngularJS

[19] with the use of the Bootstrap framework [20] and the Leaflet [23] library for utilizing the map. Furthermore,

the WebSockets [21] technology was utilized. WebSockets is an advanced technology that makes it possible to

open an interactive communication session between the user's browser and a server. With this API, you can send

messages to a server and receive event-driven responses without having to poll the server for a reply.

WebSockets was used in order to notify the operator of new chat messages, new comments at their posts, the

status of the voluntary helpers (available helpers or occupied), as well as ESSMA users that need help. The

back-end is a C++ implementation, which communicates with the front-end with the use of the C++ REST SDK

[22] for the development of the RESTful web services that enables this communication. The C++ REST SDK is a

Microsoft project for cloud-based client-server communication in native code using a modern asynchronous C++.

3.2 Supporting resilience

Within an urban transport system, streets and places and their ability to contain a maximum number of people

(max capacity), as well as the continuously moving citizens that affect the variance of the values of the street’s

capacities, can be considered as resources. The eDSS supports the resilience of the whole system by a) helping

the urban transport related authorities to make optimal use of these resources and thus contribute to minimizing

damage during a critical event (RESPOND) or b) preventing critical events from happening by evacuating areas

before a mass panic can even start (ANTICIPATE).

WWW: www.resolute-eu.org Page 18 of 109
Email: infores@resolute-eu.org

3.3 State of the art

3.3.1 Evacuation related Decision Supporting Systems

In the related literature, a number of different approaches can be identified that provide evacuation modelling.

The majority of these approaches use Decision Support Systems (DSS) in order to help the operators to make

decisions about emergency conditions that may be rapidly changing and not easily specified in advance. There

are two main conceptual kinds of models in the evacuation management systems namely: the macroscopic and

the microscopic.

On the one hand, the macroscopic model treats the evacuees (those to be evacuated) as a homogenous group

for which only common characteristics are considered, for instance an average human being is assumed. The

macroscopic model aims to succeed lower time of the evacuation plan execution without taking into consideration

the personal requirements of each actor that participates in the evacuation procedure [1].

On the other hand, the microscopic models are more personalized to each actor providing to them more

specified evacuation paths based on their special needs. These models consider individual parameters such as

walking speed, reaction time or physical abilities as well as the interaction of evacuees during the entire

evacuation process. Additionally, the microscopic approach of evacuation planning is more complex, because it

does not only consider the characteristics of the users, but also the movement and the behavior of other travelers

within the network [2]. Within the RESOLUTE project, the eDSS combines the macroscopic models methodology

with microscopic analysis for the production of the evacuation routes.

In the related work several evacuation decision support tools were implemented. The Oak Ridge Evacuation

Modelling System (OREMS) has the ability to analyze and evaluate large-scale vehicular emergency

evacuations, calculate estimation for the evacuation time and the development of evacuation plans [3]. OREMS

can be used for identifying traffic bottlenecks, and for the evaluation of traffic management strategies. However, it

can only assign passenger cars, since it does not perform modal split [4]. Another approach is the Personal

Computer based Dynamic Network Evacuation (PCDYNEV), a macroscopic model which consists of two main

parts: integrated TRaffic Assignment and Distribution model (TRAD), and Interactive Dynamic Evacuation

(IDYNEV). TRAD is responsible for generating, through the application of user-equilibrium theory, and distributing

to the stakeholders, the destination and the routes of the evacuation plan. Moreover, the IDYNEV component is a

simulation model of the traffic flow in the form of time-varying statistical histograms on each road segment [5].

A number of related works have used NETSIM and an improvement of this, the NETVACl methodology for

evacuation of large transportation networks [6]. NETVACI models traffic patterns, using dynamic route selection

and simulation of alternative evacuation scenarios in term of weather conditions, intersection controls and lane

management strategies. The EXITUS system takes into consideration the uniqueness of each actor, dealing with

disabilities explicitly in terms of physical and psychological attributes [7]. Another interesting work is a mechanism

that provides both notification alerts and personalized evacuation paths for indoor working environments. This

system consists of three components CAP-ONES for notifying emergency alerts, NERES for defining emergency

plans and generating personalized evacuation routes, and iNeres as the interface to receive and visualize these

routes on smartphones [8]. In the field of personalized guidance for emergencies, the research work in the

Wuhan University of Technology uses the Wardrop Equilibrium Model in order to calculate and create

personalized evacuation paths for the entire crowd in the campus of the University [9]. Furthermore, the work of

[10] presents a way for providing group-wise optimal routes to the exits, along with personalized routing [10].

3.3.2 Evacuation Planning Algorithms

There are two main categories of evacuation planning methods. The first category contains Integer/Linear

Programming (ILP) methods, which provide optimal evacuation solutions. For example the NETFLO [11], RELAX

[12], and Cost Scaling [13] are all optimal evacuation route planners that can generate optimal evacuation plan by

WWW: www.resolute-eu.org Page 19 of 109
Email: infores@resolute-eu.org

performing the following three steps: creating a time-expanded network, applying a minimum cost flow algorithm,

and extracting an evacuation time. Although these methods provide optimal route planning they present two

major drawbacks, their poor scalability and the requirement of prior knowledge of the upper bound of the

evacuation time T. These methods require time-expanded networks to produce a solution. If the original network

has n nodes and the time upper bound is T, the time-expanded network will have at least (T+1)*n nodes. The

computational cost of an ILP approach depends on the method used to solve the problem. By using the ellipsoid

method, the work that is described in [16] showed that the problem can be solved optimally with computational

cost 𝑂(𝑛6). Thus, the ILP methods may be useful for evacuation scenarios with small size networks like indoor

evacuations (e.g. buildings evacuation), but they do not perform well when applied to big networks such as the

urban road networks. Moreover, the upper time bound of evacuation T has to be predetermined before the

evacuation process, something that is difficult and dangerous to be done since if T is under-estimated, the system

is probably to fail; otherwise, the system has a large graph to apply the optimization techniques.

The second category contains heuristic techniques, like Capacity Constrained Route Planning (CCRP) [14] and

MRCCP [15], which have eventually been implemented and tested thoroughly. While the MRCCP provide good

solutions with better running time than the ILP approaches its computational cost of 𝑂(𝑝 ∙ 𝑛2 ∙ 𝑙𝑜𝑔𝑛) is worse

than the CCRP’s, where p is the number of evacuees and n is the number of nodes. The CCRP models capacity

on edges as a time series and uses a capacity constrained routing approach to incorporate route capacity

constraints, providing thus sub-optimal solutions for the evacuation planning. The worst-case time complexity of

CCRP is 𝑂(𝑝 ∙ 𝑛 ∙ 𝑙𝑜𝑔𝑛) which is better than both the ILP and the MRCCP approaches.

3.4 Evacuation DSS Architecture

In daily conditions, the problem of moving from one point to another can solved by providing the optimal route.

However, in emergencies the optimal route is not always the most preferable route. Other factors should also be

carefully examined for the selection of the routes, such as the location and the impact of the emergency event,

road damages, the special needs of the involved persons, etc. Figure 3, displays the eDSS architecture that

addresses all the aforementioned requirements, by processing various input data from different sources.

Figure 3. Evacuation DSS architecture

WWW: www.resolute-eu.org Page 20 of 109
Email: infores@resolute-eu.org

The eDSS developed within the RESOLUTE project, aims at helping the UTS responsible to calculate evacuation

paths for the public, taking into account profile information and the special needs of each involved person in case

of emergencies, as well as, to provide action routes to voluntary helpers in order to reach trapped/injured citizens.

3.5 Data Sources & Data processed by eDSS

As shown in the eDSS’s architecture displayed in Figure 3, the module receives input data coming from different

sources. A brief overview of the basic data sources and the provided data follows in Table 1.

Table 1: Input Data

Source Data

Local Storage • road infrastructure

• flood susceptibility maps

Data Management Layer • traffic related data

• people waiting areas

ESSMA • users’ profile

• users’ location

• users’ situation

Application Framework • users’ profiling

• flood hazard

• network analysis

UPT • real-time location of people on trams and on platforms connected to

tramway public Wi-Fi (via Data Management Layer)

UTM • traffic data

• traffic events

• traffic strategies (e.g. close/open a road)

eDSS’s front-end • Events’ information (e.g. location, severity, etc.)

• Areas to be evacuated

• Information regarding the people to be evacuated (e.g. special needs,

location, number, etc.)

• request for evacuation planning

• block/unblock a road

3.5.1 Urban Road Network & Maps

3.5.1.1 Firenze Map

Regarding the city of Firenze and the provided road data, the road infrastructure was expressed in terms of nodes

and edges. For each road the following parameters was available, as they are described in Table 2.

Table 2: Available parameters of Firenze’s roads

WWW: www.resolute-eu.org Page 21 of 109
Email: infores@resolute-eu.org

Type Example Description

Road Element Unique identifier RT05100251420ES

Defined according to the following rule:

• Characters 1, 2: RT

• Characters from 3 to 8: ISTAT code of

the municipality where is localized the

road element

• Characters from 9 to 13: progressive

starting from the value of the

characters 3 to 8

• Characters 14,15: ES

Road Element Type 0205

1) 0100 = carriageway trunk

2) 0200 = area of structured traffic

3) 0201 = the toll / motorway barrier

4) 0204 = square

5) 0205 = roundabout

6) 0206 = crossing

7) 0207 = structured parking

8) 0300 = area of unstructured traffic

9) 0301 = park

10) 0307 = in the area of relevance

11) 0400 = pedestrian

12) 5100 = connection, link road, junction

13) 5200 = service road

14) 5300 = ferry (a dummy element)

Technical functional classification 0300

1) 0100 = Highway

2) 0200 = Main interurban

3) 0300 = secondary suburban

4) 0400 = scroll Urban

5) 0500 = urban neighbourhood

6) 0600 = for private use

Element location 0200

1) 0100 = flush

2) 0200 = bridge

3) 0400 = ramp

4) 0500 = gallery

Official name written out in full
S.S. SENESE ARETINA

(73)
Official road names

Initial Node (NOD_INI) RT04801725396GZ Initial node junction code

Latitude of initial node 43,748728
Latitude of the initial node expressed on the

WGS 1984 geographic coordinate system

WWW: www.resolute-eu.org Page 22 of 109
Email: infores@resolute-eu.org

Longitude of initial node 11,233767
Longitude of the initial node expressed on the

WGS 1984 geographic coordinate system

Destination node (NOD_FIN) RT04801725397GZ Destination node junction code

Latitude of destination node 43,749446
Latitude of the initial node expressed on the

WGS 1984 geographic coordinate system

Longitude of destination node 11,235391
Longitude of the initial node expressed on the

WGS 1984 geographic coordinate system

Flooring condition 0100

0100 = paved

0200 = Unpaved

Free flow rate 50 Free flow rate in km/h

Average speed 50 Average speed in km / h

Length 14

length of the element expressed in meters,

-1 = Undefined

Lane type 1

Lane type:

• free access to all vehicles = 1

• public transport only = 2

• cycle lane = 3

Lanes number 1 lanes number

Traffic Direction FT

Direction of traffic:

• blank = road section opened in both

directions (default)

• FT = road section opened in the

positive direction (from

• Junction NOD_INI to NOD_FIN

junction)

• N = road section closed in both

directions

• TF = road section opened in the

negative direction (from

Junction NOD_FIN to NOD_INI junction)

Based on the given length and the number of lanes the capacity of each road/edge was calculated. For the

calculation of the capacities, the minimum travelling entity was assumed a pedestrian. Assuming that the ratio

WWW: www.resolute-eu.org Page 23 of 109
Email: infores@resolute-eu.org

between cars and pedestrians is 1(𝑐𝑎𝑟)~10(𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠), we first calculate the cars capacity of each road.

Given the fact that the average length of cars is approximately 5.0 meters (avg_car_length) the capacity of a

road, regarding vehicles, can be computed by the following type:

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑐𝑎𝑟𝑠 = ⌊
length ∙ lanes_Num

avg_car_length
⌋

While the capacity of pedestrians can be calculated as:

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠 = 10 ∙ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑐𝑎𝑟𝑠

3.5.1.2 Athens Map

Regarding the city of Athens, again, the road infrastructure was expressed in terms of nodes and edges, as it is

displayed in Figure 4.

Figure 4: Map of Athens expressed in nodes and edges

For each road the following parameters was available, as they are described in Table 3.

Table 3: Available parameters of Athens’s roads

Type Example Description

Road Element Unique identifier 10540 Unique node id (progressive value)

Initial Node (NOD_INI) 862762 Initial node junction code

Latitude of initial node 37,975857
Latitude of the initial node expressed on the WGS
1984 geographic coordinate system

Longitude of initial node 23,732544
Longitude of the initial node expressed on the WGS
1984 geographic coordinate system

Destination node (NOD_FIN) 862861 Destination node junction code

Latitude of destination node 37.975685
Latitude of the initial node expressed on the WGS
1984 geographic coordinate system

Longitude of destination node 23,734009
Longitude of the initial node expressed on the WGS

WWW: www.resolute-eu.org Page 24 of 109
Email: infores@resolute-eu.org

1984 geographic coordinate system

Street name ERMOU Street name

FLENGTH 130
Link Length in specified direction (NOD_INI,
NOD_FIN) in meters

TLENGTH 130
Link Length in specified direction (NOD_FIN,
NOD_INI) in meters

FMODE p
Mode1 that uses the link2 in specified direction
(NOD_INI, NOD_FIN)

TMODE p
Mode3 that uses the link4 in specified direction
(NOD_FIN, NOD_INI)

FCLASS c
Street Classification5 in specified (NOD_INI,
NOD_FIN)

TCLASS c
Street Classification6 in specified direction
(NOD_FIN, NOD_INI)

FLANES 1
Number of Lanes7 in specified direction (NOD_INI,
NOD_FIN)

TLANES 1
Number of Lanes8 in specified direction (NOD_FIN,
NOD_INI)

The combined node pairs define unique directional links. The pair (NOD_INI, NOD_FIN) defines the link’s

digitized direction and the pair (NOD_FIN, NOD_INI) defines the opposite direction of the same link.

As with the Firenze’s case, the capacity of each road can be calculated using the available data. Specifically, the

length and the number of lanes can be used, as it is described in:

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑐𝑎𝑟𝑠 = ⌊
length ∙ (FLANES + TLANES)

avg_car_length
⌋

Based on the type of each road the speed limits were defined for each road in Table 4

Table 4: Average speeds for the roads of Athens according to their classification

Road Classification Speed limits(km/h)

1 c : Car (private Car and / or Bus, or Bus only), p: Pedestrian
2 If mode “c” exists only in one direction and not in the opposite direction (FMODE=”cp” and TMODE=”p”), then this is an

oneway link in the direction (NOD_INI, NOD_FIN).
3 c : Car (private Car and / or Bus, or Bus only), p: Pedestrian
4 If mode “c” also exists in TMODE (FMODE=”cp” and TMODE=”cp”), then this is a two way link.
5 (F)reeway, (E)xpressway, (P)rimary, (S)econdary, (C)ollector.
6 (F)reeway, (E)xpressway, (P)rimary, (S)econdary, (C)ollector.
7 The width of the streets can be calculated, based on some assumptions and using the number of lanes, the mode and the

street classification.
8 The width of the streets can be calculated, based on some assumptions and using the number of lanes, the mode and the

street classification.

WWW: www.resolute-eu.org Page 25 of 109
Email: infores@resolute-eu.org

Freeway 130

Expressway 120

Primary 90

Secondary 50

Collector 30

3.6 eDSS Back-End Modules

3.6.1 Network Representation Module

A common way to mathematically model & represent networks are graphs (G) that are composed by sets of

nodes (N) and sets of edges (E). In most cases dealing with graphs, the first question that has to be addressed is

to decide which locations should be represented as nodes. In our case, considering the road network, each node

represents a junction of two or more roads, while their inter-connections (roads) are represented as edges. The

second critical question regarding the construction of the graph refers to the attributes describing the nodes and

the edges. The main attribute, which describes the nodes during the evacuation, is the initial number of travellers

located at the node at the beginning of the evacuation. In order to provide personalized evacuation plans, the role

(i.e. rescuer, to be rescued) and the type (e.g. average, blind, wheelchair, vehicle, etc.) of each user are also

important. Regarding the edges of the graphs several attributes can be used for describing them (e.g. length,

width, travelling time, direction, name, classification, etc.). Thus, the description of the edges is depending on the

available data that describes each road. In most cases, when dealing with graphs and routing problems, the most

important parameters are the weights and the directions of each edge. Usually, in order to attach a weight to an

edge, we consider the travelling time required to travel from one node to another. Although, travelling time

information is difficult to be provided for the entire road network and especially for such a kind of constantly

changing environment as the road network is during emergencies. So when the travelling time for all the edges

are not available, the most applicable way of calculating them is by taking into account attributes such as the

length, the width, the traffic, the condition of the road, the type of road, etc. over the speed of the travelling entity.

Another important parameter that must be considered is the capacity of each road. When dealing with the routing

of big groups of travellers the road network’s capacity have to be adjusted and considered appropriately in order

to avoid traffic congestions. After determining the nodes’ & edges’ attributes and modelling the road network as a

directed, weighted & capacitated graph G= (N,E), different algorithms can be applied (e.g. routing algorithms).

Figure 5: Real word and graph representation of an area

WWW: www.resolute-eu.org Page 26 of 109
Email: infores@resolute-eu.org

For the needs of the RESOLUTE project, the eDSS had to be adapted to the available data and to the

RESOLUTE pilots. In this direction, a specific sub-module of the eDSS was developed, namely the Graph-based

representation module. Since the two cities where the pilots will take place are, the city of Firenze and the city of

Athens graph representation of their road networks had to be constructed. Due to this, map representations of the

cities of Firenze and Athens where available, as shapefiles9, from the RESOLUTE partners. The current version

of the eDSS is able to receive road network related input data in form of CSV files. For this reason, all the needed

information was extracted from shapefiles to CSVs with the use of GIS commercial tools. Furthermore, the spatial

shape of each road was extracted, to be able to create a real world representation of the map for visualization

purposes. Figure 5 displays at left the real world representation of an area, while at right the modelled graph in

which the algorithm are applied.

3.6.2 Graph-based Simulator

By their nature, emergent events are continuously changing situations that may cause several problems to the

normal function of the urban transport system, while in extreme cases they may cost the lives of many people.

Due to this, and in order to be able to adapt the modelled graph to these challenging situations, the Graph-based

Simulator (GS) was developed.

Figure 6: Graph based simulator

As shown in Figure 6, the GS receives various input data from various sources, processes them and adjusts the

weights of the modelled graph accordingly. In this way, the eDSS’s routing plans will not guide the evacuated

population through traffic congested areas or areas that are in great danger. The GS is composed by two sub-

modules, the Contextual Simulation Module (CSM) and the Traffic Simulation Module (TSM), which are described

in the following sections.

3.6.2.1 Contextual Simulation Module

The Contextual Simulation Module (CSM) is responsible for modelling the effect of the emergency depending on

the kind of the disaster. More specifically, the eDSS can be informed of an emergent event through its interactive

front-end, where the operator can define manually the area affected by an event, the severity of the event, as well

as the kind of the event. Furthermore, the Application framework and specifically the Weather Risk Estimation

Module can be used in order to update the values of the graph. In this way, if the operator requests for evacuation

planning, the computed evacuation routes will avoid to guide people through the areas in danger.

9 The shapefile format is a popular geospatial vector data format for geographic information system (GIS) software.

WWW: www.resolute-eu.org Page 27 of 109
Email: infores@resolute-eu.org

3.6.2.1.1 Marking a hazardous Area

The Front-end of the eDSS provides an easy way for the operator to interact with the computation of the

evacuation routes. Being informed of a hazardous event the operator can define over the map a circle

representing the limits of the affected area. He can also add information regarding the severity of the event and

other additional information. Such actions can lead to the update of the weights of the graph, so as to weights of

roads within the specified area to be adjusted, as Figure 7 displays.

The update of the weights is based on the affection of a 2d Gaussian distribution. The new weights of the graph

are described by the following equation:

𝒘𝒏𝒆𝒘 = 𝒘𝒐𝒍𝒅 ∗ (𝟏 + 𝒈)

Where wnew is the new weight of the road, wold the previous weight of the road and g the affection of the event

based on the Gaussian distribution as it is calculated by using the following equation:

𝐠 = 𝑨 ∗ 𝐞𝐱 𝐩 (− (
(𝒙 − 𝒙𝟎)𝟐

𝟐𝝈𝒙
𝟐

+
(𝒚 − 𝒚𝟎)𝟐

𝟐𝝈𝒚
𝟐

))

Where A is the amplitude and equals to the severity of the event (an integer number between 1(low severity) and

10(high severity)), defined by operator, 𝜎𝑥 and 𝜎𝑦 are the x and y spread of the blob 𝜎𝑥 = 𝜎𝑦 = 𝑅/2,R the

radius of the marked area , (𝑥0,𝑦0) the coordinates of the centre of the hazardous event, and (x, y) the

coordinates of the road segment’s closest node to the centre of the event. Due to the fact that the radius is

calculated in meters while the x,y are geographical coordinates (y: latitude, x: longitude) and the numerator

express the distance of two points the equation can be written as:

𝐠 = 𝑨 ∗ 𝐞𝐱 𝐩 (−
𝒅𝟐

𝟐 (
𝑹
𝟐

)
𝟐

)

Where d the distance of the two points calculated using the haversine formula[24].

Figure 7: Graph weights adjustment regarding the emergent event

3.6.2.1.2 Weather Risk Estimation from Application Framework

Moreover, the Application Framework can provide useful information regarding the weather severity and

especially the flood hazard. The provided flood hazard is a number value between 0.0 and 1.0. The latter

combined with extracted information from the susceptibility flooding map (provided by UNIFI) can be used in

order to update the weights of the most susceptibility to floods road segments.

The provided susceptibility-flooding map contains information regarding the most vulnerable areas within the city

of Firenze. The data of the flood map and of the road network was pre-processed such as the most susceptible

roads to be extracted. By fusing the extracted information about the susceptible road and the risk estimation of

flood the adjustment of the road weights are given following the equation. Figure 8 shows the whole procedure.

WWW: www.resolute-eu.org Page 28 of 109
Email: infores@resolute-eu.org

𝒘𝒏𝒆𝒘 = 𝒘𝒐𝒍𝒅 ∗ (𝟏 + 𝒇𝒍𝒐𝒐𝒅_𝒓𝒊𝒔𝒌)

Figure 8: Graph affection based on flood risk estimation

3.6.2.1.3 Network Vulnerability Estimation from Application Framework

An analysis aimed at identifying the possible vulnerabilities of the UTS, according to the current situation, is

performed by the Network Analysis module, placed within the “Mission critic layer” and, more specifically, into the

“Application framework”. It retrieves the basic input data from the “Data management layer”, in particular

structural and service information about the UTS, and its analytical functionalities can be accessed via the

“Integration ESB”. Results consist of a list of the most critical components of the UTS and the analysis is

performed on demand (i.e. performing a request to the corresponding web service).

An internal graph-based representation of the UTS is obtained starting from the structural and service

information, but the graph is dynamically modified according to modifications to the UTS, which can occur

overtime, allowing for an estimation based on the current condition of the UTS.

Finally, the output of the network analysis module (i.e. a list of nodes and edges identified as “critical” with respect

to a set of measures computed on the current status of the UTS) can be then suitably interpreted by the module,

which has performed the analysis request. Such a service-oriented paradigm allows for using the network

analysis module in different contexts (generating a graph model for public transportation network, road network,

rail network, etc.). Furthermore, and more importantly, it allows implementing visualization, as well as decision

support, just according to Figure 9. More details are provided in the deliverable D4.3 “Application Framework”,

where the design, development and initial validation on the available sets of data have been reported. In

particular, preliminary results on network analysis have addressed the public transportation networks in Florence

and the Attika region: the most critical stops/stations (i.e., nodes of the graph-based model) and connections (i.e.,

edges of the graph-based model). The following section reports the basic data structure of the results provided by

the network analysis.

WWW: www.resolute-eu.org Page 29 of 109
Email: infores@resolute-eu.org

Figure 9 Data model of the network analysis result: message exchanged through the ESB follow this model.

Furthermore, as an example, the following Figure 10 reports the “basic” output provided by the network analysis

service. The figure shows the critical nodes and edges according to some graph-based measures and the current

condition of the public transportation network. All the communications (i.e. request and response) go through the

ESB. The web page is just in charge to visualize – as text – the results of the analysis, in order to show how

“simple”, or “basic” is this information and how it can be easily integrated with other data/consideration for more

sophisticated – for instance geo-localized – visualization.

The eDSS communicates with the network analysis module, retrieves its output and provides the latter to the

eDSS UI in order to visualize the most critical parts of the road network as a new layer over the map.

Figure 10 A sample of response from the network analysis module

WWW: www.resolute-eu.org Page 30 of 109
Email: infores@resolute-eu.org

3.6.2.2 Traffic simulation Module

The Traffic Simulation Module (TSM) is responsible for applying changes to the weights of the graph regarding

the traffic volume of the road network. The traffic sensors that are distributed within the city of Firenze provide

real time data to the Data Layer. The TSM communicates with the Data Layer and receives information about the

location and the measures provided by each sensor (e.g. vehicle flow, vehicle concentration, avg. speed, etc.).

The TSM utilizes this information by setting the average speed of the roads according to the retrieved by the

sensors average speed. In this way, the weights of the roads are directly connected will real time traffic data and

are adjusted accordingly.

Except from the traffic sensors and the Data Layer, the TSM communicates, through the ESB, with the UTM

DSS. The UTM DSS can provide real-time information considering the condition of the UTS based on data

retrieved by its actuation channels. Thus, the UTM DSS can suggest the blockage of a road or the blockage of an

entire area due to critical traffic events. This kind of information can be retrieved and be handled by the TSM in

order to adjust the structure of the graph to avoid producing evacuation routes that include the blocked roads.

The opposite procedure (unblock a road) is also handled by the TSM after being triggered by the UTM DSS.

3.6.3 Evacuation Manager

3.6.3.1 Evacuation Planning Algorithms

Due to the analysis of Section 0, the eDSS core algorithm has been based on the CCRP.

eDSS evacuation algorithm

Input:

1) G=(N,E): a graph G with a set of nodes N and a set of edges E;

Each node 𝑛 ∈ 𝑁 has:

 Initial_Node_Occupancy(n): non-negative integer

Each edge 𝑒 ∈ 𝐸 has two properties:

 Maximum_Edge_Capacity(e): non-negative integer

 Travel_Cost(e): non-negative integer

2) S: set of source nodes,𝑆 ⊆ 𝑁;
3) D: set of destination nodes, 𝐷 ⊆ 𝑁;

Output: Evacuation plan: Routes with schedules of evacuees on each route

Method:

Pre-process network: add super source s0 node to network, link s0 to each source nodes

with an edge which Maximum_Edge_Capacity()= and Travel_Cost()=0;

While any source node s S has evacuee do {

 Find route R 〈𝑛0, 𝑛1, … , 𝑛𝑘〉 with time schedule 〈𝑡0, 𝑡1, … , 𝑡𝑘〉using one generalized

 shortest path search from super source 𝑠0 to all destinations, (where 𝑠 ⊆ 𝑆, 𝑑 ⊆ 𝐷,

 𝑛0 = 𝑠, 𝑛𝑘 = 𝑑) such that R has the earliest destination arrival time among routes

 between all (s,d) pairs, and

 Available_Edge_Capacity(𝑒𝑛𝑖𝑛𝑖+1, 𝑡𝑖)>0 ∀𝑖 ∈ {0,1, . . 𝑘 − 1},

 flow = min(number of evacuees still at source node s,

 Available_Edge_Capacity(𝑒𝑛𝑖𝑛𝑖+1, 𝑡𝑖), ∀𝑖 ∈ {0,1, . . 𝑘 − 1})

WWW: www.resolute-eu.org Page 31 of 109
Email: infores@resolute-eu.org

 for i = 0 to k – 1 do{

 Available_Edge_Capacity(𝑒𝑛𝑖𝑛𝑖+1, 𝑡𝑖) reduced by flow;

 }

}

Output evacuation plan

In order the algorithm to be able to calculate the routing plans the knowledge of the travel cost of each road

segment (edge) is required. The travel cost of each road segment is computed as the upper bound of the weight

of the road segment, as it is affected and defined by the graph affection modules, over the average speed of each

user or group of users for the particular road and is described by the following equitation:

𝑇𝑟𝑎𝑣𝑒𝑙_𝐶𝑜𝑠𝑡(𝑒) = ⌈𝑤𝑔(𝑒)/𝑠⌉

Where ‘𝑇𝑟𝑎𝑣𝑒𝑙_𝐶𝑜𝑠𝑡(𝑒)’ is the final travelling cost of the road segment, ‘𝑤𝑔(𝑒)’ is the road’s weight according

its length and the affection of the graph affection modules, and ‘s’ is the speed of the traveler according to the

type of the road.The system considers two main groups of travellers, the travellers-vehicles and the pedestrian

travellers. Regarding the first group (vehicles) their speeds was defined considering the provided speeds of its

road. In case of Firenze the average speed of each road was available from the input map, while in case of

Athens the speed limits of each type of road was available as described in Table 4. Considering the second group

(pedestrians) two factors can affect their speeds, the type of the road and the profile information of each user.

Based on its profile a pedestrian can be described by the following vector:

𝑑̅ = {𝑑1, 𝑑2, … , 𝑑𝑚} ,

where, 𝑑𝑖 , 𝑖 ∈ {1, … , 𝑚} describes the 𝑚 different types of disabilities (e.g. no disability, vision impairments,

walk disabilities, etc.) for a pedestrian. The different types of roads can be also represented as a vector:

𝑡̅ = {𝑡1, 𝑡2, … , 𝑡𝑛} ,

where 𝑡𝑗, 𝑗 ∈ {1, … , 𝑛} describes different types of roads. Based on the types of the users’ disabilities and the

types of roads a table 𝑉 ∈ ℝ𝑀×𝑁 is constructed where 𝑉𝑖𝑗: the average speed of a user of type 𝑑𝑖 in road of

type 𝑡𝑗. The first column of the table 𝑉1𝑗was set to contain the average speeds of a normal user (user without

disabilities) for each type of road.

Next, based on table 𝑉we compute the normalized table 𝐹 ∈ ℝ𝑀×𝑁,

𝐹𝑖𝑗 =
𝑉𝑖𝑗

𝑉1𝑗

Where𝐹𝑖𝑗 : the value of the speed of a 𝑑𝑖disabled user over the speed of a normal user for the road of type𝑡𝑗.

We set a user 𝑢 and a road 𝑟, where 𝑢 ∈ [0,1]𝑀, 𝑀:the number of disabilities, and describes the percentage of

each disability of the vector 𝑑̅., and 𝑟 is described by the vector 𝑡̅ so as to 𝑟 ∈ [0,1]𝑀 where 𝑁different types

of roads. Thus the final speed 𝑉𝑢𝑟of the user 𝑢 over the road 𝑟 can be calculated from the following type:

𝑉𝑢𝑟 = 𝑉1𝑗 ∙ ∏[1 − (1 − 𝐹𝑖𝑗)𝑢𝑖]

𝑀

𝑖=1

WWW: www.resolute-eu.org Page 32 of 109
Email: infores@resolute-eu.org

3.6.3.2 eDSS Modes & Priorities

The Evacuation Manager can provide routing plans concerning three different functional modes, namely: group-

wise evacuation, personalized evacuation, and collaborative rescue.

The group-wise evacuation refers to the evacuation of groups of crowds from different locations over the graph.

By identifying users with common characteristics (e.g. speed), the system creates groups of similar users and

provides evacuation routes to each one of them. By utilizing the CCRP algorithm, the eDSS secures that all

groups reach at the safe points without conflicts. Usually, the formatted groups regard two kinds of groups, the

vehicles and the normal pedestrians. It should be mentioned that the guidance provided to vehicle-users respects

the traffic directions and also avoids guiding the vehicles through pedestrian or inaccessible by vehicle roads.

Information regarding the travelling way (by foot or by vehicle) of each user is retrieved by the ESSMA.

On the other hand the personalized evacuation mode treats the most vulnerable pedestrian users, providing to

them evacuation routes that fits best to each user’s profile. Through its communication with the ESSMA the eDSS

retrieves information regarding the users’ profiles and their disabilities. Within the RESOLUTE the eDSS

concerns two kinds of disabilities for each pedestrian user, vision and walk disabilities. If an ESSMA user has

walk or vision disabilities, he can define it to his profile information. Based on this, the user’s vector is constructed

and the users speed is calculated for each type of road based on the aforementioned equation. The definition of

the table 𝑉was based on the works of [17] [18] that present in detail the average speeds of vulnerable people

concerning their kind of vulnerability and the type of road. Thus, following the personalized evacuation mode

adjusts the weights of the graph accordingly and provides them with the most fitted, considering their profile,

evacuation routes. For instance, if the type of a road segment describes stairs the weight for a normal, a blind

and a wheelchair user will be different preventing users with disabilities to follow this path. Finally, the

collaborative rescue planning is a dynamic functionality that may occur during the evacuation phase. People

being trapped, injured or in need of help is not a rare phenomenon during emergencies. These persons may be

persons that have received evacuation routing and are unable to reach at the safe points. Concerning the above,

the collaborative rescue tries to utilize all the available sources in order to help the unable persons to reach at the

safe points. In order to achieve this it utilizes its communication with the ESSMAs of each user. Through the

ESSMA, people that need help can send an SOS message to the evacuation responsible. The eDSS operator is

alerted about these cases through the eDSS UI (section3.7). The operator can then send an alert message to all

the voluntary helpers and ask them if they are willing to help. After gathering the helpers’ availability the operator

can request from the eDSS to calculate the collaborative rescue action plan. Similar to the group-wise and the

CCRP the following algorithm is used for the computation of the collaborative rescue plan.

Algorithm (collaborative rescue)

Input:

1) G=(N,E): a graph G with a set of nodes N and a set of edges E;

Each node 𝑛 ∈ 𝑁 has two properties:

 Initial_Node_Occupancy(n): non-negative integer

Each edge 𝑒 ∈ 𝐸 has two properties:

 Maximum_Edge_Capacity(e): non-negative integer

 Travel_Cost(e): non-negative integer

2) S: set of source nodes in which the voluntary helpers are initially located,𝑆 ⊆ 𝑁;

Each node 𝑠 ∈ 𝑆 has one property:

 num_of_available_helpers(s): non-negative integer

3) D: set of destination nodes in which the users that needs help are initially located, 𝐷 ⊆ 𝑁;

Each node 𝑑 ∈ 𝐷 has one property:

WWW: www.resolute-eu.org Page 33 of 109
Email: infores@resolute-eu.org

 num_of_ helpers_needed(d): non-negative integer

Output: Collaborative rescue plan: Routes with schedules of helpers on each route

Method:

Pre-process network: add super source s0 node to network, link s0 to each source nodes

with an edge which Maximum_Edge_Capacity()= and Travel_Cost()=0;

While (any source node s S has helpers && any destination node need help) do {

 Find route R 〈𝑛0, 𝑛1, … , 𝑛𝑘〉 with time schedule 〈𝑡0, 𝑡1, … , 𝑡𝑘〉using one generalized

 shortest path search from super source 𝑠0 to all destinations, (where 𝑠 ⊆ 𝑆, 𝑑 ⊆ 𝐷,

 𝑛0 = 𝑠, 𝑛𝑘 = 𝑑) such that R has the earliest destination arrival time among routes

 between all (s,d) pairs, and

 Available_Edge_Capacity(𝑒𝑛𝑖𝑛𝑖+1, 𝑡𝑖)>0 ∀𝑖 ∈ {0,1, . . 𝑘 − 1},

 flow = min(number of available helpers still at source node s,

 number of helpers still needed at destination node d,

 Available_Edge_Capacity(𝑒𝑛𝑖𝑛𝑖+1, 𝑡𝑖), ∀𝑖 ∈ {0,1, . . 𝑘 − 1});

 for i = 0 to k – 1 do{

 Available_Edge_Capacity(𝑒𝑛𝑖𝑛𝑖+1, 𝑡𝑖) reduced by flow;

 }

}

Output collaborative rescue plan

The Evacuation Manager calculates the evacuation routes in a prioritized way. The system concerns the most

vulnerable people as those with the highest priority; the normal pedestrian users have the second priority, while

the vehicle users have the lowest one. In this way the system ensures that the shortest paths will be provided to

the most vulnerable people, in order to evacuate them as efficient as possible and with the lowest effort from their

side.

3.7 eDSS User Interface

Except from the back-end of the eDSS also a front-end was developed in order to facilitate the urban transport

authorities to easily take advantage of the back-end functionalities. So, the eDSS provides a control room

software which’s target users is a person (or a team of persons) responsible for supervising the evacuation

procedure. Considering this, the front-end of the eDSS was designed following design standards so as to be

user-friendly and to offers an easy way for exploiting the functionalities of the eDSS back-end. For the

development of the UI, the mockups provided by Fraunhofer and presented in D5.2 were followed. In this section

the eDSS UI is presented.

The functionalities of the eDSS’s are listed below:

a) Monitor on the map (e.g. users need help, ESSMA users’ location, bus location, etc.)

b) Affect the structure and the travelling weights of the graph representing the city’s road network

i. Exclude/ re-include a road

ii. Mark areas that are in danger over the map

c) Manage routing procedures

i. Manage the evacuation procedure

i. Initiate evacuation

ii. Select users to be guided

WWW: www.resolute-eu.org Page 34 of 109
Email: infores@resolute-eu.org

iii. Add extra users

iv. Request for evacuation planning

v. Send the calculated evacuation plan to the CDM for approval

vi. Send personal guidance, considering the calculated evacuation plan, to each involved

user

ii. Manage the collaborative rescue procedure

i. Monitor for ESSMA users that need help

ii. Send message to the voluntary helpers asking for their availability to help

iii. Receive the responses of the voluntary helpers containing their availability

iv. Request for the calculation of the collaborative action plan

v. Send the guidance to each involved user

d) Communicate with ESSMA users

i. Chat communication

ii. Timeline (e.g. post news/updates at the timeline)

e) Manage settings & receive notifications

3.7.1 Monitoring activities

Figure 12 displays the starting page of the UI, which is displayed to the operator when the latter accesses the

eDSS. The implemented UI follows the proposed mockups that were presented in D5.2 and is displayed in Figure

11. The starting page is constructed mainly by four components: i) the map, ii) a sidebar at the left of the page, iii)

a sidebar at the right of the page, and iv) a bar at the top of the page. Each one of the components serves

different purposes and all together, they aim at giving the operator an overall view of the emergent situation,

helping him/her to manage it and facilitating him/her to communicate with the citizens. The view of the

implemented UI is very close to the provided mockups, while the right part of the UI that is missing from Figure

11, follows alternative suggestions of D5.2.

Figure 11. Mock-up of the eDSS UI starting page

WWW: www.resolute-eu.org Page 35 of 109
Email: infores@resolute-eu.org

Figure 12: eDSS UI starting page

As defined in the Grant Agreement of the RESOLUTE project, the CRAMMS was meant to integrate a wide

variety of Decision Support modules into a unified system. This has been achieved through three (3) different

types of integration: Visual, Data and System integration.

In this respect, the following table shows the type of data derived from the different modules developed within the

activities of the project. In particular, Table 5 contains the information that can be displayed over the map for the

cities of Firenze and Athens, a short description of them, their source and the way that it is represented. The

source of the information can be the data management layer, the ESSMA apps, the back-end of the eDSS or the

result of the interaction of the operator with the front-end.

Table 5: Information displayed on the map

Data Description Representation Source Cities

Bus stops Firenze’s bus stops

Data Layer Firenze

Train stations Firenze’s train stations

Data Layer Firenze

Tram stops Firenze’s tram stops

Data Layer Firenze

Traffic

sensors

Traffic sensors placed at various

locations of the road network. More

information regarding the values of

the sensors can be displayed by

clicking on the sensors.

 Data Layer Firenze

Buses

locations
Firenze’s buses’ real time locations

Data Layer Firenze

All ESSMA

users

Current locations of each ESSMA

user. By clicking on a user, further

information regarding the user can

be displayed (e.g. special need, etc.)

ESSMAs Athens, Firenze

Voluntary

helpers

Current locations of all ESSMA

users that are declared as voluntary

helpers. By clicking on a user more

information, regarding the user can

be displayed (e.g. special need, etc.)

ESSMAs Athens, Firenze

Available voluntary helpers

ESSMAs Athens, Firenze

WWW: www.resolute-eu.org Page 36 of 109
Email: infores@resolute-eu.org

Occupied voluntary helpers (e.g.

users that have already received an

action plan)

eDSS back-

end
Athens, Firenze

Citizens in

danger

Current locations of ESSMA users

that are in danger. By clicking on a

user, further information regarding

the user can be displayed (e.g.

special need, etc.)

ESSMAs Athens, Firenze

Served users (in danger). Users that

have made a request from help and

helper(s) were planned to help them.

ESSMAs Athens, Firenze

Evacuation

Routes

Routes for guiding the citizens

(ESSMA users or not) at the safe

point.

Colourful

polylines

eDSS back-

end
Athens, Firenze

Danger

Areas

Red circles over the map declaring

areas in danger.
Red circle

eDSS front-

end
Athens, Firenze

Evacuation

Areas

Blue circles over the map declaring

areas to be evacuated.
Blue circle

eDSS front-

end
Athens, Firenze

Nodes

Nodes of the road network

infrastructure. By clicking on them

the users can set them as safe

points or starting nodes

eDSS back-

end
Athens, Firenze

Edges

Edges of the road network

infrastructure. By clicking on them a

pop up containing information about

the selected road is displayed, as

well as options to include or exclude

a road from the routing planning

procedures.

Black polylines
eDSS back-

end
Athens, Firenze

Starting

Nodes

Nodes containing people. Set by the

operator for including them in the

calculation of the evacuation

planning.

eDSS front-

end
Athens, Firenze

Safe Points

Safe points. Set by the operator.

Locations where the evacuated

crowd will be guided to.

eDSS front-

end
Athens, Firenze

By using the “Map Layer” (sub-component of the left sidebar) the operator can choose which information will be

displayed over the map. As in the majority of the online services using maps, markers are used for representing

points over the map. For instance, Figure 13 displays the location of the traffic sensors located at the roads of

Firenze. Moreover by clicking on a marker (traffic sensor) additional information can be retrieved (e.g. name,

vehicle flow, etc.)

WWW: www.resolute-eu.org Page 37 of 109
Email: infores@resolute-eu.org

Figure 13. Illustration of the selected, from the Map Layer, information on the map. By clicking on a marker more information
regarding the represented item can be retrieved.

In the traffic sensor example, the operator can get the real time Traffic Data by clicking the button “Get Real Time

Data” as it is shown in Figure 14

Figure 14. Real Time Data of Sensor

The Figure 15 offers a way for visualizing the ESSMA users in visual clusters. Users with similar behaviour are

positioned close to each other. The information regarding the clusters is retrieved by the user-profiling module of

the application framework and the data of users’ movements that creates these clusters are retrieved using the

same API that the ESSMA uses, in order to feed the system with this information. Through this widget of visual

clusters, the operator is able to illustrate users with common movement behavior.

Figure 15. Widget displaying the ESSMA users in visual clusters based on their common attributes.

The operator can clear the map by using the “Clear map” functionality of the control panel. By selecting this, the

map is returned to its initial condition. All the added or requested, by the operator, actions (e.g. adding events,

setting start/end nodes, evacuation plan, etc.) are cleared.

Finally yet importantly, it is worth mentioning that the map has standard interaction features known from other

popular online maps (e.g. zoom in, zoom out by scrolling over the map, move the map using the mouse, etc.).

WWW: www.resolute-eu.org Page 38 of 109
Email: infores@resolute-eu.org

The operator can choose among four different map layers as a basis of the map (i.e. street, satellite,

openStreetMap, grayscale) according to their preferences as shown in the following table.

 Open Street Map view Satellite view

Grayscale view Street view

Table 6. The different available map views of the eDSS UI interactive map

WWW: www.resolute-eu.org Page 39 of 109
Email: infores@resolute-eu.org

3.7.2 Human Machine Interaction services of the eDSS

3.7.2.1 Exclude/Include a road

Through the eDSS’s front-end, the operator can affect the structure of the road network’s formatted graph. By

selecting the “Exclude” option form the control panel at the left sidebar (Figure 12) a layer that contains all the

available edges appears. By clicking on an edge, more information is appeared, regarding the particular road

segment. Additionally, a button that allows the operator to include or exclude a road from the procedure of

calculating the routes that has to be followed. By clicking at the “Disable edge” as Figure 16 displays the operator

can exclude a road. The excluded roads are highlighted as red. The operator can re-include the road by following

the opposite procedure and select for the particular edge the “Enable edge” option.

Figure 16: Road network representation and information display of a specific road.

3.7.2.2 Mark Area in danger

There is also the “Add Area in Danger” functionality of the control panel that can affect the evacuation procedure.

This functionality regards the marking of an area as a hazardous area. When the operator marks an area as

hazardous/dangerous the information is sent to the back-end and specifically to the CSM (described in section

3.6.2.1.1), resulting thus to the update of the travelling weights of the graph. Figure 17 displays how the “Add

Area in Danger” feature can be utilized by the operator.

Figure 17: “Add Area in Danger” operator’s view.

WWW: www.resolute-eu.org Page 40 of 109
Email: infores@resolute-eu.org

By clicking on it, the operator can use the drawing tool in order to mark an area as hazardous. By using the

drawing tool, the operator can also edit or delete a previously marked area. The operator can “inform” the back-

end about the new marked areas by clicking the send button.

Except from affecting the evacuation and the collaborative rescue, planning the “Add Area in Danger” can be

used in an informative way for the ESSMA users avoiding them passively to approach the affected area. When

the operator sets the danger areas and push the “SEND” button, the ESSMA users are informed via the app for

the location of the event coupled with additional information about the event. The additional information

describing the emergent situation (i.e. title, description, severity, message to ESSMA users) can be added by

right clicking on an area. Then a form is displayed as Figure 18 and additional information about the event can be

added by the operator.

Figure 18: Set additional information about an Area in Danger (left). View of the information by clicking over the marked area
(right).

3.7.3 Routing Procedures Management

3.7.3.1 Evacuation Procedure

Except from monitoring purposes the user can use the eDSS UI for managing the evacuation procedure. The

following figure demonstrates the sequence diagram of the evacuation procedure.

Figure 19. Sequence diagram of the evacuation procedure.

By selecting the “Evacuate” action, from the control panel component, the evacuation procedure is initiated and

the application shows the window that is shown in Figure 20. This is a systematic guide for the operator in order

to manage the evacuation process properly. Except from the systematic guide, the layer containing all the

ESSMA users and their location is displayed.

WWW: www.resolute-eu.org Page 41 of 109
Email: infores@resolute-eu.org

Figure 20: The evacuation procedure is initiated by the operator

As the evacuation guide instructs, at first the operator needs to select the area that will be evacuated.

Figure 21: Evacuation area marked by the operator

 All the ESSMA users within the marked area will be treated as users to-be-evacuated. After marking an

evacuation area the operator has to define the safe points where the groups of people will be guided to, and thus

the layers containing the nodes of the road network is displayed (Figure 21).

Figure 22: Safe points defined by the operator

By clicking on a node, the operator can define a node as a safe point. The defined safe points are displayed on

the map by an orange marker. Figure 22 displays the described procedure for setting a safe point over the map.

Except from the ESSMA users the operator can, optionally, define extra start nodes (custom users to-be-

evacuated) coupled with the number and the type of the users located to these nodes. This can be done manually

WWW: www.resolute-eu.org Page 42 of 109
Email: infores@resolute-eu.org

as Figure 23 displays for both Athens and Firenze, while for the city of Firenze, the people count APIs can be

utilized for retrieving real-time information about the number of the gathered people at a specific location.

Figure 23: Nodes containing crowd to evacuated defined by the operator

This functionality is useful when the ESSMA is not available to the users (e.g. citizens that do not use

smartphones, etc.) and the local bodies undertake to inform the operator about the located crowd and guide the

latter. The defined nodes are displayed also with a different marker over the map. After finishing the

aforementioned steps, the operator can trigger the eDSS for the calculation of the evacuation plan. The computed

plan is illustrated on the map as depicted in Figure 24.

Figure 24: Illustration of the computed evacuation plan over the map.

Figure 24 shows that the eDSS has computed routes for all the ESSMA users that are located within defined

evacuation areas as well as for the manually defined nodes. If the evacuation operator approves the computed

evacuation plan, he can send it to the Dashboard and the CDB for the final approval. The CDM can either

approve or reject the proposed evacuation plan. In each case, the evacuation responsible is notified about the

CDM’s decision.

WWW: www.resolute-eu.org Page 43 of 109
Email: infores@resolute-eu.org

Figure 25: a) The proposed evacuation plan sent to the CDM (left). b) The CDM approves the evacuation plan (right)

If the CDM approves the proposed evacuation plan, each of the involved ESSMA users receives a personal

message with the evacuation route that has to follow.

3.7.3.2 Collaborative Rescue Procedure

The front-end of the eDSS also offers to the operator a mean for watching and managing the collaborative

rescue procedure. The idea of the collaborative rescue is based on the assumption that people who are

physically capable may be willing to help their fellow citizens that may need help during emergencies. Thus, users

that are willing to help others during emergencies can declare it to their ESSMA profile, and be subscribed as

voluntary helpers. The following figure demonstrates the sequence diagram of the collaborative rescue

procedure.

Figure 26. Sequence diagram of the collaborative rescue procedure
Figure 27: ESSMA SOS button

functionality

The collaborative rescue procedure can be triggered only after one or more ESSMA users make an SOS-call. If

there are not any users that need help (citizens in danger) and the operator tries to initiate the collaborative

rescue procedure, then an alert will be displayed to the operator informing them that they cannot initiate the

collaborative rescue procedure.

Figure 27 shows how the ESSMA users can send SOS messages using the app. For sending an SOS message

users have to press and hold the “Send SOS” button. Together with the SOS message they can also send more

WWW: www.resolute-eu.org Page 44 of 109
Email: infores@resolute-eu.org

information about their condition to the operator. The ESSMA users that have sent SOS messages are displayed

on the map together with the relative information as the left image of Figure 28 displays. In this way the operator

is informed at real-time about the users that need help.

Being informed of users that need help the operator can initiate the collaborative rescue procedure by selecting

the “Collaborative Rescue” option from the control panel. At first a button is appeared which enables the operator

to send a message to the registered as voluntary helpers ESSMA users asking them if their available to help

others.

Figure 28: Users that have called the ESSMA’s SOS functionality are displayed over the map (left). The operator initiates the
collaborative rescue procedure (right).

The sent message is broadcasted to all the voluntary helpers. An alert is

displayed to the voluntary ESSMA users as Figure 29 shows. The latter can

declare if they are willing to help or not and send their response back to the

operator. The users that replied that they are available to help are displayed over

the map with green markers as the left of Figure 30 shows. Every time receiving a

new reply from the users considering their availability, the map is updated

accordingly. When there are at least one or more available helpers, a button that

allows the operator to request for the collaborative rescue plan is shown, as it is

displayed at the left image of Figure 30. When the operator decides it, he can

request for the calculation of the collaborative rescue plan. The resulted plan is

displayed over the map (Figure 30 – right image) and the routes that have to be

followed by the helpers are sent through the ESSMAs to each one of them.

Furthermore, the status of the involved users are updated accordingly so as the

available users that have received guidance to help others are marked as

occupied users while the citizens in danger that are to receive help are marked as

served users. The operator can initiate the whole procedure from scratch when

new SOS messages are received. The occupied helpers as well as the served

users are not considered as a part of the new plan.

Figure 29. Message sent to
the helpers asking them if
they are available to help

WWW: www.resolute-eu.org Page 45 of 109
Email: infores@resolute-eu.org

Figure 30: Available users and users that need help are displayed on map, as well as a button that enables the operator to
request for collaborative planning (left). The calculated plan displayed on the map and the update of each user’s status (right).

A number of choices are given to the involved users after sending guidance to them. Each of the actions, which

are described below, can result a sequence of changes:

1. An occupied helper quits from his “mission”: An occupied user can quit from his mission by using the

ESSMA. The citizen in danger that was meant to be saved by the particular user will be automatically

marked as user that needs help.

2. A served citizen in danger informs that he does not need help anymore: A served user declares through

the ESSMA that he is safe and he no more needs help. They are removed from both the served users

and the citizens in danger. The helper that was guided to this user is informed that his target is safe and

there is no more need for helping him.

3. A helper reach at his target: After receiving their targets (citizens in danger), the movements of the

occupied helpers are tracked. So when they reach at their targets a new message is displayed to them

asking for their next action. They can decide either to get guidance in order to reach a safe point or to

declare that they are safe.

3.7.4 Communication with ESSMA users

3.7.4.1 Chat communication

The eDSS in conjunction with the ESSMA offers also another important functionality for the communication of the

operator (or the operator’s team) with the citizens, namely, the chat communication. As shown in Figure 31, the

chat communication is similar to other existing chat mechanisms. This functionality can be triggered by the

“Messages” option of the control panel. After clicking on it, a new window is opened where the operator can

choose to start a new communication with a specific user or to continue an existing one. Except from plain text

messages the operator can receive pictures, which can next download and posting them to the “Live Updates”. In

this way the user can have an active role in the collection of critical information by early informing them for new

hazard events. They can send to the operator or to the other local authorities content that could be vital for the

stockholders in order to understand the critical level of a situation. The chat communication can also be used in

the evacuation procedure in case the citizens want more details or for informing about an unexpected situation. It

can be also utilized by users that are in danger for describing in detail their situation.

3.7.4.2 Live Updates

In the “Live Updates” (Figure 33), which are located at bottom of the right sidebar, the operator is able to add new

posts for warning the users about the ongoing critical events. The content of the posts may contain pictures,

videos or plain text. Every time the operator creates a new post the ESSMA users are alerted. The “Live Updates”

feature offers a kind of communication between users and the operator since users can interact with each post by

WWW: www.resolute-eu.org Page 46 of 109
Email: infores@resolute-eu.org

adding a comment or liking the post. The operator can also reply to a user’s comment that will be publically

viewed. The whole procedure is empowered with the use of web sockets and push notifications. As we previously

mentioned, the ESSMA users are alerted by either web socket or push notification messages.

3.7.5 User setting & Notifications

At the top of the main page there is a bar for facilitating the operator to manage the communication procedure, to

sign out from the platform, or to manage their profile setting. By clicking also at the operator’s icon at the top bar,

the operator can view/update his profile information. The operator can click the operator’s icon to sign out from

the platform. When a user comments on a post in the “Live Updates” or sends a chat message to the operator the

latter is informed by notification icons at the top bar of the main page, as it is displayed in Figure 32. By clicking

on the notification a dropdown window appears with the latest “Chat” or “Live Updates” events respectively. By

selecting one of the notification messages a new window open with more detail about the event.

Figure 31: Chat
communication

Figure 32: Chat notification Figure 33. Live Updates View

WWW: www.resolute-eu.org Page 47 of 109
Email: infores@resolute-eu.org

4 UTM DSS

The UTM DSS is one of the components of the CRAMSS which, through the implementation of strategic traffic

management, enables cooperative operations control by means of definition and automatic identification of

control strategies for both daily-life and emergency situations. It covers the following ITS applications (in terms of

monitoring, and decision-support system when identifying pre-set network situations):

• Urban traffic control

• VMS control

• Parking management

• Streetlight control

The UTM DSS supports the minimization of damage and increases the resilience of the UTS by adapting the

traffic management to current needs.

The main functionalities of the UTM DSS are the following:

• Traffic data (including volumes, flows, occupancy) acquisition and validation from heterogeneous data

sources

• Traffic event acquisition from external sources, automatically generated or manually inserted

• Calculation of the O/D Matrix, Level of Service (LoS) on the reference network

• Generation of automatic traffic events based on estimated congestion level

• Identification of the critical points of the road network through off-line simulations for given traffic

conditions

• Recognition of specific traffic pattern according to predefined scenarios

• Actuation of strategies through available channels (e.g. VMS, UTC, ESB)

The UTM DSS automatically identifies the critical points on the road network, and uses them to monitor the traffic

situation. It supports mobility in an urban area by continuously monitoring the traffic conditions integrating

heterogeneous Urban Traffic Systems for a collaborative mobility management.

The UTM DSS has in input:

• the graph of the area of interest

• traffic related data

• traffic events coming from external sources

• O/D matrix

Based on this input and on the off-line identification of critical points of the reference network, the UTM DSS is

able to compute traffic predictions across the entire network, therefore being able to provide real-time information

in relation to Level of Service, Travel Times, Traffic Events. Furthermore it is able to apply real-time corrective

and mitigation actions through all available actuation channels (e.g. create priority corridors through the UTC,

display information through VMS) in a coherent way across overall network.

The UTM DSS enhances the awareness at CRAMSS level to the provision of:

• Real-time traffic information

• Critical points of the road network for given traffic conditions

• Real-time traffic events

• Actuated strategies according recognized traffic scenario

WWW: www.resolute-eu.org Page 48 of 109
Email: infores@resolute-eu.org

4.1 UTM Strategies

The UTM DSS performs a continuous monitoring of selected control points to evaluate the activation conditions

for all the defined strategies. When one (or more) strategy activation conditions are verified, all corresponding

control actions are activated. Strategy activation can be:

• automatic: control actions are activated directly without prompting the user

• semi–automatic: user is prompted before activating control actions

• manual: strategy actions are started upon user request regardless the activation conditions

Every strategy is defined providing:

• control points

• activation conditions for the control points

• activation conditions for the strategy

• activation type (automatic, semi-automatic, manual)

• actions (operations control for assigned objects)

• priority

UTM DSS offers strategy monitoring services to easily identify:

• running strategies

• strategy condition (activation status, control points status, …)

Running strategies can be terminated:

• automatically, when activation conditions are no longer verified;

• on user request.

Strategic traffic management operations are logged in the RESOLUTE common linking platform logbook where

they can be retrieved for offline analysis and statistics.

4.2 UTM Architecture

The following figure shows the UTM DSS components architecture:

Figure 34 - UTM DSS Component Architecture

WWW: www.resolute-eu.org Page 49 of 109
Email: infores@resolute-eu.org

The UTM DSS relies on field devices both for data acquisition and control actions; this means that an event that

affects field devices or field communication network can compromise the effectiveness and quality of the

recognised strategies.

4.3 Component interface

The UTM DSS bi-directionally communicates with the ESB, in order to collect data and update them when

needed. Moreover, the UTM DSS sends its output to the ESB. The UTM DSS communicates with UTM actuation

channels, as UTC or VMS for the actuation of traffic management strategies. The UTM DSS provides RTTI (Real

time Traffic Information) to the RESOLUTE data layer.

4.4 Component API

All objects and methods are exposed using HTTP protocol. Object models can be serialized in XML and Json

formats. Object models format can be set by the requesting client by simply specifying expected format directly

into the “Accept” request header.

4.5 Retrieve measures for an object

For each object that produce measures (traffic light controller, detection unit, measurement station, detectors) it is

possible to retrieve the list of measures calculated by the object. To retrieve measures, send an authorized GET

request to the following URL:

http://domain/rest/v1/objecttypes/{GUID}/measures?token={token}&fromDate={datefrom}&toDate={dateto}

with the appropriate value in place of {GUID} and {dateFrom} and {dateTo} with valid value. Upon success, the

server responds with a HTTP 200 OK status code and measures list. Examples of Requests & Responses can be

found in Annex I

4.6 ESB interface

The UTM DSS exposes two categories of data: events and strategies. Sample XML can be found in Annex III.

WWW: www.resolute-eu.org Page 50 of 109
Email: infores@resolute-eu.org

5 UPT DSS

The UPT DSS is the component of the CRAMSS able to combine data flowing from Signalling Controllers and On

Board Units in an integrated manner such as to provide a fully featured system to monitor and control the

tramway operations. Localization and monitoring of the vehicles and supervisory of the tramway Signalling

system is achieved through a “distributed” architecture.

At the OCC, the UPT DSS application is in charge of collecting, managing and dispatching data coming from the

Wayside Controllers and On Board Units. Each of the typical Tramway function can be treated, allowing the

operators to generate timetables, track and retrieve events, visualize and follow on the display the trams’

positions and their current status, manage train regulation, remotely control wayside devices, receive and

acknowledge warnings and alarms.

The UPT DSS is a system that manages the tram localization. It is able to detect the tram position on the line and

to manage the tram regulation by early/delay messages. It manages the ground equipment status, sets main line

and depot route requests for tram parking. The UPT DSS displays the status of equipment like signals, switches,

rail track circuits, trams, wayside controller and road signals and it provides the interface to manage the

Timetable. The system provides all functionalities to manage the entire tramway in a single integrated HMI.

The UPT DSS manages also the Wi-Fi Network of the tramway to provide free internet access to all tramway

passengers, both on board of trains and on platforms. Through this system (UPT DSS Wi-Fi Connector) it is

possible for the Metropolitan City of Florence to display messages and information directly on passengers’

smartphones (on the internet connection splash page). Moreover, the system is able to track the location of each

connected device, thus allowing a precise map of number and location of tramway’s passenger (therefore an

estimation of the number and location of all tramway passengers)

For the RESOLUTE Project, to avoid disruption of operations on the real-tramway DSS, a simulator has been

developed by Thales to simulate tramway operations sending and receiving relative events to the Resolute ESB.

5.1 Architecture

The following figure shows the UPT DSS components architecture:

Figure 35: UPT Architecture

APIS
Automatic Public

Information System

ITMS

CORE

RCS

ADMIN

CERS

INTERFACE

PIMS DIAG
AVLS

HMI

TTMS

Human Machine

Interface

Timetables and

Provisional

Services

management

TETRA Device Management

and Low Level

Communication Protocol with

On Board Computer

Configuration and

Operator’s

Accounts

Management.

Security Access to

the System

Event

Recording,

Retrieve Statistics

Remote Control

of Wayside

Services

Vehicles location and

position consistency
Passenger Information

management
Diagnostic

TETRA

Gateway

OBS

IxL

On Board

System

Interlocking

SAM

SCAP

WWW: www.resolute-eu.org Page 51 of 109
Email: infores@resolute-eu.org

The following figure shows the UPT DSS Wi-Fi Resolute connector:

Figure 36: UPT DSS Wi-Fi Resolute connector

5.1.1 Component interface

The UPT DSS communicates with the ESB, in order to send events to other DSSs and to the CRAMSS user

interface. The UPT DSS provides real-time number and location of people connected to the tramway Wi-Fi to the

RESOLUTE data layer.

5.1.2 Component API

Tramway events from the UPT DSS simulator are sent to the ESB using the Resolute ESB Data format. Real-

time number and location of people connected to the tramway Wi-Fi are exposed using HTTP protocol. Object

models are serialized in Json formats.

5.1.2.1 UPT DSS Simulator Events Interface

The UPT DSS is able to inject events into Resolute ESB through the following interface…

http://domain/rest/v1/objecttypes/{GUID}/measures?token={token}&fromDate={datefrom}&toDate={da

teto}

Event List:

Below some examples of the events that could be generated by UPT DSS Simulator:

Technical issue

Line suspended

Line separated in two rings

WWW: www.resolute-eu.org Page 52 of 109
Email: infores@resolute-eu.org

Below some events that could be received by the UPT DSS Simulator:

Close Tramway Order

Suppress Station Order

Other Big Impact Tramway Decisions

The list is not complete, since the type of events that could be generated is completely configurable at runtime,

therefore will be updated during the evolution of the project.

5.1.2.2 UPT DSS WiFi Connector Interface

The UPT DSS WiFi connector continuously calculates the number and locations of devices (thus passengers)

connected to the tramway WiFi, and exposes the results using an HTTP interface reachable at the following

endpoint (the destination port is configurable)

http://<WiFiConnectorIP>:8888

The data exposed from the WiFi Connector shall conform to the JSON SCHEMA of Annex II.

To avoid any privacy issues, the ID of the devices monitored by the UPT DSS WiFi connector are anonymized

before being sent, through a service provided by the Metropolitan City of Florence.

WWW: www.resolute-eu.org Page 53 of 109
Email: infores@resolute-eu.org

6 RESILIENCE DASHBOARD

The Resilience Dashboard is created through the Dashboard Builder, which is an open source tool developed by

DISIT lab in the context of H2020 REPLICATE project, a smart community lighthouse 10 . It represents the

synthesis of the status of the UTS and it is thought for being installed in each control room of the interested

stakeholders.

The information provided has been selected according to the D4.2, D5.1 and D5.2 outcomes where an extended

analysis with the operators has been carried out to identify what are the critical decisions that cause delay and

which kind of data they want to have to enhance such decisions. Even if the requirements have been identified

with precision, the flexibility of the application is a “must to have” feature. In fact, in view of un-anticipated

changing conditions and to support learning and improvement cycle, the Dashboard might need to be periodically

updated to respond to every emergent need. To this end, the choice of using the Dashboard Builder application

has been considered the most appropriate. The Dashboard Builder web app presents a back office where can be

managed the entire dashboard created. To access to the tool it is necessary to obtain a Username and

Password.

6.1 RESOLUTE DASHBOARD UI

Figure 37. Dashboard UI

The Dashboard has been implemented following the D5.2 recommendations. The Dashboard is going to be used

by different users such as Civil protection, Mobility dept., Urban Police, etc. thus the information included in the

panel comes from the result of a harmonization of the requirements applied in the D5.2.

The widgets have been grouped vertically, according to the domain they refer to:

▪ messages coming from the different DSS and published in the ESB (ESB column)

▪ indicators referred to the most important environmental aspects (Environment column)

▪ indicators referred to mobility aspects (Mobility column)

▪ indicators referred to resources availability in the system (Resources column)

▪ Social media section

10 www.replicate-project.eu

WWW: www.resolute-eu.org Page 54 of 109
Email: infores@resolute-eu.org

▪ Service map

▪ Territory usage clustering

▪ Real time people concentration

The layout strategy is organised from the Real Time (left) info to the slow dynamics info (right)

Figure 38. Layout strategy of Dashboard

The resulting Dashboard, thus, can be used in different situations while reducing confusion and mental workload

thanks to the spatial organization of the signals. In particular numeric parameters has been separated by the

geographical data. Weithin the numeric section the information has been organised in columns as described in

the subsequent sectons.

6.1.1 ESB column

In this column the info read form the ESB are shown. Such info are basically: Alerts (e.g. car accident), events

generated by the connected DSS (e.g., Mobility supervisor), the events already planned in the city and that are

on-going, and the messages arrived from the eDSS where an acceptance request is sent to the ESB and

displayed by the Dashboard. In particular, through the account of the Mayor (see. D5.2) it is possible to accept

the evacuation route proposed by the eDSS and send it back to it through the ESB the message.

6.1.2 Environmental column

In this column a number of relevant indicators has been grouped, which are useful to assess the status of the
environment in the city. The extreme events related to the climate change, such as storm, flash flooding, heat
wave, etc. can be easily monitored and put in relation to each other when they are displayed together. In fact,
such information is generated by different authorities, and a unique view able to combine them together enhances
the situational awareness. The indicators selected are: river levels, wind speed, humidity, civil protection alerts,
and temperature.

6.1.3 Mobility column

In the mobility column the information regarding the status of relevant mobility services and infrastructure are
reported. In particular, the status of the public transport system (bus), the status of the underpasses
(open/closed), and the status of the parking’s availability. The traffic status is directly accessible through the
Service map widget, while the mobility events are include di the ESB column (alert or DSS).

Real time (respond)
Slow dynamics (anticipate)

Numeric – based data

Geographic- based data

WWW: www.resolute-eu.org Page 55 of 109
Email: infores@resolute-eu.org

Figure 39. ESB column Figure 40. Environmental column Figure 41. Mobility column

6.1.4 Resources column

This section includes the resources that can be monitored in the city. The availability of resources and their

efficient allocation are at the core of the resilience strategy and adaptive capacity estimation. The resources

considered useful for taking decisions are: children’s presence at school day by day, number of ambulance units

available, number of civil protection volunteers available, the triage status for the hospitals in the city in real time.

6.1.5 Twitter Vigilance

Additionally to the work presented in “Section 5.6.2 - Twitter Dataset creation of the deliverable” D4.2, this section

includes the information coming from the Twitter Vigilance tool. It is a separated application but it has been

widgetised for the RESOLUTE project in order to have a view of the social media trends in real time integrated in

the Dashboard. There are three kinds of information displayed: most frequent tags and users cited real time

trends, and daily-based statistical analysis.

Figure 42. Resources column Figure 43. Twitter Vigilance

WWW: www.resolute-eu.org Page 56 of 109
Email: infores@resolute-eu.org

The Twitter Vigilance Real Time platform (http://disit.org/rttv/) has been designed by the DISIT Lab of the

University of Florence as a multipurpose comprehensive tool, providing different tasks and metrics suitable for

Twitter data analysis, with the aim of early monitoring critical events and different contexts regarding resilience

aspects, producing also alerts, notifications and several kinds of actions. Its modular architecture is based on a

distributed crawler, which performs data gathering and extraction by using Twitter public APIs. The data

acquisition approach is based on the concept of Twitter Vigilance Channel, consisting of a set of simple and

complex search queries, which can be defined by a registered user by combining keywords, hashtags, user IDs,

citations, etc., in a structured logical syntax, according to the search syntax of Twitter. Subsequently, collected

tweets are processed by the back-office processes, which implement statistical analysis (number of tweets,

retweets, number of unique users etc.), natural language processing (NLP, extracting different Part-of-speech

items such as nouns, adjectives, verbs, hashtags and mentions) and sentiment analysis (in terms of a positive

and negative polarity sentiment score of extracted text items), as well as general data indexing. The metrics

resulting from by the back-office processes (low-level metrics) are computed in real time and stored in a

dedicated database. This approach allows making them accessible to the front-end graphic user interface, which

graphically show their temporal trend and allows users to download processed data for further analysis.

Users can also define custom high-level metrics (by exploiting the above mentioned low-level metrics,

dynamically combining them by using mathematical operators and expressions, as well as other user defined

high-level metrics). It is also possible to define temporal trends of high-level and low-level metrics, computed by

summing the metrics on defined time intervals chosen by the user, allowing also to specify temporal repetition of

the computation. In a similar way as for low-level metrics, the computation of high-level metrics and trends is

carried out by scheduled processes, which are periodically computed by the back office.

Furthermore, besides the definition of high-level metrics and trends, users can define custom thresholds (which

can be represented by constants as well as by other metrics) for defined metrics. Dedicated back end processes

continuously monitor low-level and high-level metrics, trends and corresponding thresholds in order to detect

when a threshold is exceeded:. When this occurs, a firing event is produced by the system through a specifically

designed notificator, which can perform several kinds of operations, such as: automatically sending alerts through

email (to custom lists of recipient users), SMS, and also activating the emergency call center by posting tweets

(Twitter bot), and also performing actions, for instance sending API rest calls to other tools dedicated to produce

recommendations and/or decision support systems.

6.1.6 Service map

This widget includes all the information provided by the Service Map web application. For instance, it is possible

to display the real time data of traffic sensors, the bus stops status, healthcare services, accommodation

services, etc. It is possible to obtain info of ca. 20K different services in the city, organised in 20 categories and

512 sub-categories.

http://disit.org/rttv/

WWW: www.resolute-eu.org Page 57 of 109
Email: infores@resolute-eu.org

Figure 44 - Service map

6.1.7 Real time people concentration

This widget represents the presence of the people in real time in a specific area of the city. The data displayed is

the result of continuous a geo-clustering of the data coming from the city’s open WiFi. This widget includes all the

features of the APs Streaming Realtime web application and allows several levels of filtering according to the

user needs.

Figure 45 - Rea time people presence

6.1.8 Territory usage

This widget displays on the map the access points with a colour that presents a specific kind of access dynamics.

Access points with the same colours exhibit the same access dynamics. Since each access represents a

presence of the person in a specific area of the territory, we can deduce that such a measure represents how the

territory is used by the people along the day. With this perspective, it is possible to identify which areas of the city

WWW: www.resolute-eu.org Page 58 of 109
Email: infores@resolute-eu.org

have a pick of presence in the same time window. Such information can support the operators in optimising the

patrols distribution.

Figure 46 - Territory usage

WWW: www.resolute-eu.org Page 59 of 109
Email: infores@resolute-eu.org

7 RESILIENCE DS TOOL

The Resilience Decision Support (Resilience DS) tool is a collaborative tool extending the FRAM model for

several aspects and integrating it with a decision support grounded on data and experts’ assessments. Such a

tool allows modelling a sociotechnical system and generating formal models for continuously assessing the CI’s

resilience and conditions. In this section, we explain the Resilience DS’s architecture. We report how the single

parts of the software were made and how they interact with each other. The tool is presented in the following

section, detailing its interface and the features.

7.1 Tool Architecture

The Resilience DS is a client-server web application with the aim of supporting resilience analysts in modelling

complex socio-technical systems, such as a UTS. The first step was to create a hierarchic schema of models and

the models’ instances. The models are equal to FRAM models and are composed of functions and aspects. An

instance, instead, is linked to the model and contains its specifications, such as the functions’ variability, and who

carries out the functions. Consistent with FRAM, the function’s variability can regard the precision and the time.

The function’s handler can be a human, an organization or a technology. The instance contains the necessary

information to execute the model on SmartDS. A future development is to transfer the required data directly to the

ResilienceDS, so that it can also be used in other simulation tools. However, we have created this tool in a way

that can be possible to extend the model information without deleting the work done or the saved models and it

can be done without much effort.

With respect to the modelling, a user can:

• Create, load, import, modify and delete a model.

• Create functions and for each function provide: name, description and colour.

• Create aspects, between functions or for only one function. For each aspect, it is possible to associate: a

label, a source, a target and a type that can be one of the 6 vertices of the FRAM’s hexagon: Input (I),

Precondition (P), Resource (R), Control (C), Time (T) or Output (O).

• Create groups of functions.

For the instances, the tool gives the possibility to provide for each functions:

• The variability concerning the time (Too early, in time, too slow, not at all) and precision (Precise,

Acceptable, Imprecise).

• The Function’s type, precisely who carries out the operations (Human (H), Organization (O) or Technological

(T)).

For the user management, the provided operations are:

• Differentiation among users’ typology.

• Login/logout of a registered user.

• Registration of a user from the client side.

• Advanced operation for an administrator

o Users’ permissions management

o Registration in the system of new users.

WWW: www.resolute-eu.org Page 60 of 109
Email: infores@resolute-eu.org

The system handles the interface with a relational Database and with an RDF store. The former is needed to

store the models, their functions and their aspects. The latter is used to retrieve the data necessary for linking the

functions to the respective data from the Smart City. For the RDF store, methods have been created but they

have not been implemented, yet.

Depending on the user’s permissions, the user interface allows the user to perform the actions described above.

So, each user typology has a list of operations that can be done, while the server side manages the operations on

a model and provides the interface between client and MySQL. The server retrieves all the information stored in

the DB, about the models and the users.

The final result is composed of a client-server application. The client side lets the users to do the operations on a

model, and define it and its instances. The server is composed by two modules. The first one, the FRAM module,

is related to the model and instance management. For that, there are two interfaces. One is for the creation,

saving, loading, importation, exportation, modification and deletion of a model. The other is for saving, loading,

modifying and deleting instances. In the FRAM module, there is yet another interface for linking the model with

the SQL database and the RDF store. The interface to the SQL DB is necessary for saving the model, the

instances and their data. The interface to the RDF store is necessary to the retrieve the data from the Smart City,

the sensor or other simulation tools.

The second module serves for user handling. Through the DB it is possible to save and retrieve users’

information and make different functionalities accessible to them, based on the typology.

Each module is divided into three parts: one interface for connecting client and server, a core with the classes for

managing the models and another interface for translating the information requested and saving it in the DB.

More details are explained in the next sections. Figure 47 shows the system schema and the interactions among

the different parts.

Figure 47. Resilience DS Architecture

Regarding the program languages, we have used java for the server side, whereas the client was developed with

JavaScript. For the latter, the D3 library and the jQuery framework have been used.

WWW: www.resolute-eu.org Page 61 of 109
Email: infores@resolute-eu.org

7.2 Database Structure

This section describes the approach, which in the Resilience DS serves to generate and store a FRAM’s model.

To start, we have considered the XML format produced by the FRAM Model Visualizer (FMV), presented in [27].

The FMV application is used to create and visualize FRAM models. It stores all of the data in a text file with a

‘.xfmv’ file extension, using a standard XML format. The data files can be viewed using a text editor or imported

by any program that reads XML data. The XML structure has 4 hierarchical levels: The ‘root’ level sits within an

<FM> tag.

1. The second level contains the following seven sections: <Functions>, <Controls>, <Inputs>, <Outputs>,

<Preconditions>, <Resources>, <Times>. An <Aspects> section may be present but is not used by the

FMV, as this level was created by an earlier FMV application.

2. Each of the seven sections above can contain any number of tags that represent the elements of that

section. For example, Functions in the FMV model are nested within the <Functions> tags, each having its

own <Function> tag at the third level. The remaining six sections are for the FMV model’s Aspects. Each

<Input> tag is nested within the <Inputs> tag, and so on.

3. The fourth level contains data specific to the elements within each section.

For each Function, there are 4 data fields:

<IDNr> An index number for the Function. Sequential, beginning with zero.

<FunctionType> The type of Function as determined by the application. Valid values are: 0 (Foreground), 1

(Foreground Variable), 2 (Background).

<IDName> The name of the Function as entered.

<Description> The description of the Function as entered.

The <Function> tag has 8 attributes used to store data specific to the visualisation of the FRAM model:

fnStyle: Indicates the model rendering style: 0 (Traditional), 1 (Modern).

Style: The selected pre-set colour of the Function: white, blue, green, grey, red, yellow, purple, custom.

Color: If the style is ‘custom’ then this is used to store the custom colour value.

fnType: The variability type. Valid values are: 0 (undefined), 1 (Technological), 2 (Human), 3 (Organisational).

x, y: These are the x, y coordinates for positioning the Function within the model space.

Tp: The potential output variability with respect to time: 0 (Too early), 1 (On time), 2 (Too late), 3 (Not at all).

Pp: The potential output variability with respect to precision: 0 (Precise), 1 (Acceptable), 2 (Imprecise).

For each of the other sections that contain Aspect information there are three data fields:

<IDNr> An index number. Sequential within each section, starting at 1.

<IDName> The name as entered.

<FunctionIDNr> The index number (IDNr) of the Function that this Aspect is a child of, for example, an Output

with <FunctionIDNr> = 0 will be an output of the Function that has <IDNr> = 0.

WWW: www.resolute-eu.org Page 62 of 109
Email: infores@resolute-eu.org

The association is based on the attribute IDName, so if another Function has a different Aspect with the same

<IDName>, the two will be shown as linked in the FMV.

In Figure 48 example created with FMV is depicted, which we use for showing the internal structure. The

corresponding FMV file is provided in Annex IV.

Figure 48. FMV Example with 4 functions: 2 foreground (A, B) and 2 Background (C, D).

What we expect from the Resilience DS is at least the same features of the FMV, especially for editing a model.

Furthermore, we want to distinguish the users and give them the possibility to share the model between each

other. So, starting from the structure above, to save a FRAM model, we have identified 5 tables, corresponding to

the main classes, that are:

• Model: Represent an instantiation of the FRAM model. The fields are:

o id:(int) the univocal model identifier. An integer value starting from one.

o type:(varchar) the type of visibility/share of the model. Possible values are:

▪ public: All the users can see, share and use as template the model.

▪ private: The model is shared in a group and all the users who belong the group can view,

share and modify it.

▪ protected: The model is shared in a group and all the users who belong the group can

view the model but not share or modify. Only the creator can make changes or share it with

other.

o objective:(text) the model’s goal.

o description:(text) a text variable that reports a description of the model’s scope.

o idUser:(int) the identifier of the user that has created the model.

o data_create:(time) the data creation of the model.

o data_last_change:(time) the data of the last change in the model.

o size:(int) the number of functions present in the model.

• Function: are the FRAM’s functions\actions which compose the model (The hexagons). The fields of this

table are:

o id:(int) the univocal function’s identifier. A progressive value that start from 1.

o idModel:(int) the univocal identifier of the model that contains the action.

o Name:(text) the function’s name.

o Description:(text) the description of the action.

o Position:(integer, integer) the x-coordinate and y-coordinate of the hexagon in the frame.

WWW: www.resolute-eu.org Page 63 of 109
Email: infores@resolute-eu.org

o Color:(text) the color of the function’s hexagon. This value can be a predefined style, for example:

red, blue, green etc. or a rgb value. The default value is black (#000000)

o function_type:(int) like FMV this value reports the role of the function in the current model. This

value is set when a model is imported from FMV, and actually is not updated. The values are:

▪ 0: foreground. A function that is part of the study focus, which in practice means if the

variability of the function may have consequences for the outcome of the event or process

being examined.

▪ 1: background, something that is used from foreground function. It also used for drain

function or downstream, the function that receives an Input, and it represents a further

process or continuation of the event. So this type of function can provide the inputs for

other blocks, or receives the output of others without doing anything.

Unlike FMV, which uses a third value for describe function in foreground that has a variation, we use only 2

options for ‘function_type’. The way that we represent a variable function is explained above, with the introduction

of the class ‘model_instance’.

• Aspect: in the literature, the term ‘aspect’ represents one of the five inputs of a FRAM block. For us, this

class represents the five entries: input, prerequisite, resource, time and control. Furthermore, with this term,

we also considered the remaining pin of the hexagon, the ‘output’. This is because, in FRAM, an output is

also an input of another function (except for a drain function). This simplifies the DB management and avoids

duplications. Below, the variables of an aspect are reported:

o id:(int) the identification value for the aspect.

o idModel:(int) the model where the aspect is defined.

o label:(text) the label to show on the edge.

• FRAMGroup: these are the components introduced in the Resilience DS in order to handle hierarchy and

models with a huge number of functions. A group is substantially a function of functions whose behaviour

depends on its components. For that reason, the attributes are essentially the same as those of a function.

• Model_Instance: is the class that represents an instantiation of the FRAM model. In each instantiation, it is

possible to study the behaviour of a model due to functional variability.

o id:(int) the univocal identifier of a model instantiation.

o idModel:(int) the univocal identifier of a model.

o idUser:(int) the univocal identifier of the user who creates the instantiation. This user is not

necessarily the model’s creator.

o description:(text) the instance’s description.

o data_create:(time) the data of creation of the model.

o data_last_change:(time) the data of last change in the model.

Now, we are going to show how these classes are connected. In Figure 49 is reported the connection between

Model and Function. Each model can have different functions, as opposed every function appertains at one

model.

WWW: www.resolute-eu.org Page 64 of 109
Email: infores@resolute-eu.org

Figure 49. Relation between the classes Model and Function.

In Figure 50 the connection between the tables is reported: Function and Aspect. Every FRAM function can

have more aspects and outputs, not only one for entry. On the other hand, each aspect can be shared between

more functions; in a FRAM representation it is possible to have 2 or more hexagons with the same input.

Moreover, each output is an input of another function (except the case of drain). So, we have introduced a table,

Functions_Aspects, for those connections. The functions' attributes are:

• idFunction:(int) the identifier of the function. That together with idAspect forms the key of the table.

• idAspect:(int) the identifier of the aspect. That together with idFunction forms the key of the table.

• type:(text) the aspect type in the referenced function. The value can be one of the 6 vertexes of the

hexagon: Input, Precondition, Resource, Time, Control or Output.

Figure 50. Relation between Function and Aspect.

The last thing that we have to consider is the instance of a model. A model can have different instances, opposed

to the instance that can appertain only to a specific model. As said before in each instance we can set a variation

value for the function, so every instance can have different settings for the model’s functions. Consequently, a

function can have different variations depending on the instantiation studied. For that reason, we have created

another table, Models_Functions. In this table, we have:

• idInstance:(integer) the identifier of the instance. That together with idFunction forms the key of the table.

• idFunction:(integer) the identifier of the function. That together with idInstance forms the key of the table.

• time_precision:(integer) like FMV we report the expected variation in time’s precision. The possible values

are:

o -1: No variation expected.

o 0: Function finishes too early.

o 1: Function finishes on time.

o 2: Function finishes too late

o 3: Function not at all finished. It could be not terminated, maybe for an interruption.

• potential_precision:(integer) as in FMV this value is the variation in the output. It can be:

o -1: No variation expected

o 0: The function’s output is precise, exactly what we expect from that.

o 1: The function’s output is acceptable, not so far from the expectation.

WWW: www.resolute-eu.org Page 65 of 109
Email: infores@resolute-eu.org

o 2: The function’s output is imprecise, not what we expect.

• function_maker:(integer) who or which do the function. Like FMV, the set of values are:

o 0: undefined.

o 1: function performed by a technological part.

o 2: is a Human who carries out the function.

o 3: an Organisational group conducts the function.

Figure 51. Model instances data management.

At last, we see that a group contains functions, and it can also contain other groups or be included in one group.

A single function can be included in only one group. For that, we have introduced two tables:

FRAMGroup_Function and FRAMGroup_Hierarchy. The first is used to link the groups with their functions.

This table is formed of two columns, one for the group’s id and one for the function’s id. The second table,

analogously to the first, serves to link the group with the groups in it. This table contains the identifier of the group

father and the identifier of the group in it.

In the last figure we have reported the schema of the complete DB, with all the tables and the connections

explained before.

Figure 52. Resolute_DB complete database structure.

7.3 User Typologies

The users’ typologies defined are the following:

• Simple user / Guest (Without registration)

• Advanced User

WWW: www.resolute-eu.org Page 66 of 109
Email: infores@resolute-eu.org

• Decision Maker (DM)

• Administrator

The access to the models management is enabled only for the registered users. With the registration is possible

to give different functionalities to different type of users. A new registered user has the Advanced User privilege.

The actions enabled for each user type are reported in the next paragraph.

Functionalities for the models: All the typologies of users can visualize the temporary models and those saved

in the DB. The simple user (Guest) can’t do any other operation. The advanced user can access to models

available and modify. The DM behaviour is to create new models, delete existent models, modify them, and

provide the weights for the models. The administrator can do the same operations as the decision maker. A list is

reported in Table 7. User's Functionalities for manage the models.

Table 7. User's Functionalities for manage the models.

Functionalities Guest Advanced DM Administrator

Visualize
Model

V V V V

Create New Model V V

Save New Model V V

Modify a Model V V V

Delete a model V V

Functionalities for model’s instances. All the typologies of users can visualize the instances present

temporarily in the DB. The simple user (Guest), as for the model, cannot do any other operation besides seeing

the models. The advanced user can modify the available instances. The DM can see all the instances, create

new one, modify the existent and has the possibility to set the weights and the template for the functions to export

to SmartDS. Currently, the weights and template are not included, yet. The administrator can do the same action

of the decision maker.

Table 8. Possible user's actions on the instances.

Functionalities Guest Advanced DM Administrator

Visualize
Instance

V V V V

Create New
Instance

 V V

Save New
Instance

 V V

Modify an Instance V V V

Delete an Instance V V

Set weights for the
Functions

 V V

Set templates for
the Functions

 V V

Application Functionalities. The administrator is the unique user that has the permissions to see and modify all

the profiles and related permissions.

WWW: www.resolute-eu.org Page 67 of 109
Email: infores@resolute-eu.org

Table 9. Application functionalities for the typologies of users.

Functionalities Guest Advanced DM Administrator

Manage users’
permission

 V

Following are reported the user case diagram for each typology.

Figure 53. Guests functionalities

Figure 54. Advanced user's functionalities.

Figure 55. Decision Maker available actions.

WWW: www.resolute-eu.org Page 68 of 109
Email: infores@resolute-eu.org

Figure 56. Administrator's functions. The same of DM, plus the users managment.

7.4 Server Side

The server has been realized in JAVA, using the REST paradigm (REpresentational State Transfer) for the

definition of a uniform interface and a distinction between client and server. Its purpose is to induce performance,

scalability, simplicity, modifiability, visibility, portability, and reliability. The REST architecture defines the principle

for data exchange between client and server where the resources are identified uniquely with URI (Uniform

Resource Identifier). This paradigm uses the HTTP methods: GET, POST, DELETE and PUT requests, for make

the simple CRUD operations: Create, Retrieve, Update and Delete. REST, respect to SOAP, permits to use the

HTTP operations to define the operations over the resources, without the use of methods or dedicate interface for

information access. Unlike SOAP-based web services, there is no "official" standard for RESTful web APIs. This

is because REST is an architectural style, while SOAP is a protocol. Even though REST is not a standard per se,

most RESTful implementations make use of standards such as HTTP, URI, JSON, and XML. For exchange data

we have used the XML for encoding the resources.

The principal classes defined are six: Models, FRAMModel, ModelInstances, FRAMModelInstance,

ModelExtraOperation, ModelExtraOperations. The first two are needed for make direct operations over the

FRAM models, like creation, loading, editing and deleting. ModeInstances and FRAMModelInstance do the

same operations as the previous but for the model’s instances. The last two defines the other possible operations

for models and instances. These functions are: save, set and get the identifier and set and get the description.

Furthermore, we have defined other seven resources: Function, Aspect, FunctionAspect, Group,

FunctionInstance, ExportFRAMModelResource and last, FMVModel. As possible to deduce from the name,

these are all classes for manage the components of a model. Function, Aspect and Group are respectively for

the operations over functions, aspects and groups of functions. Specifically, Group is used to create a hierarchy

on the model and contains the list of functions and groups in. In the Aspect are saved only the essential

WWW: www.resolute-eu.org Page 69 of 109
Email: infores@resolute-eu.org

information: label, id and ModelId, the others are handled by FunctionAspect. Consequently, an aspect could

link different functions by different entry (an aspect is usually the function’s output and could be an input, a

precondition, a time, a control or a time of one or more different functions), this resource is needed for retrieving

the source, the target function and the entry type (one among input, precondition, output, etc.). FunctionInstance

is used for retrieve the data about a specific function’s instance: the time variability, the precision variability and

the function’s handler.

For exporting a Model to SmartDS, we have decided to create a different class, ExportFRAMModelResource.

This is used for retrieving the model’s information from the client and creating the SmartDS’s tree structure to

export.

The last class, FMVModel, is needed to interact with models created in the FMV tool (FMV s.d.). With this, it is

possible to import a FMV file (.xfmv) into the ResilienceDS.

The REST calls for the model Operations are reported in Annex V.

For this request are needed two parameters: {model_id} and {output_id}. The first is the target’s model, which

contains the functions to study. The second, ‘output_id’, is the identifier of the output’s aspect that we want to

analyse the behaviour. We report here an example to explain how the export works.

Consider the FRAM’s model in Figure 57. FRAM export example with three functions, and a cycle. In this model,

we have a short representation of an events chain for the management of a help call by a rescue organization.

There are 3 functions: One for handling requests for help (‘Rescue calls handling’ in green), one for managing the

persons and the vehicles of the rescue force (‘Handling team’ in blue) and the last one is the function that

activates the team to send (‘Team activation’ in black).

Figure 57. FRAM export example with three functions, and a cycle.

When a call is received, the green function listens to the request, evaluates, decides which type of operation is

needed and sends a team. Basically, this is a function of an operations room. The black function activates the

forces based on the available units provided as resources from the blue one. When the team is ready it’s

activated and it starts the rescue operation. When a team is at work, the functions that manage the team have to

be updated, in the model this is the job of the ‘Team Activated’ edge between the black and blue hexagons.

For this model, is useful to export the output’s aspect ‘Team activated’ to study its behaviour, especially for

analysing when it is possible to do that. Utilizing the REST’s call above, we send the necessary information to the

WWW: www.resolute-eu.org Page 70 of 109
Email: infores@resolute-eu.org

server to build the SmartDS’s model. Following there is the correspondent XML for the model’s aspect studied

and coherent with the Analytical Hierarchical Process behind the tool.

Figure 58. XML exported, relative to the Rescue management FRAM’s Model.

The server creates this structure in the following manner. Starting from the goal, it retrieves the function that has

this aspect has output. For this block, finds its input’s aspects: inputs, preconditions, resources, times and

controls. These aspects are in turn associated to their function and studied as the goal. This process ends when

an aspect is reached that was generated by a background function (in the study case the input ‘Call Received’ of

‘Rescue calls handling’ block) or when a function has no inputs. But, as shown in the example, there can be

cycles in the structure (the blue and black blocks call each other). These cycles occur when one function depends

on another one in different time stamps or steps. The problem is that a cycle is translated into an infinite branch of

the tree. To prevent this, along the path to the leaf, when a propagation is observed that could generate a cycle,

the search is stopped. The next function in the path is added as a leaf and is marked with a ‘-1’ to indicate that is

the result from a previous step.

The final tree for the example reported is shown in the figure below.

WWW: www.resolute-eu.org Page 71 of 109
Email: infores@resolute-eu.org

Figure 59. SmartDS's tree for the Rescue Example.

Now we are going to see how is structured the server. The server side is essentially divided into two modules:

• FRAM module

• User module

The FRAM module manages the models and the instances. The main operations are:

• Creation of a model / model’s instance.

• Modify of models / models’ instances.

• Save of a model / model’s instance.

• Load of a model / model’s instance.

• Import of a FMV model.

• Export of a model to SmartDS.

This module interfaces with the relational database to save and retrieve models. Also, even if not exploited, the

interface methods to the RDF store are present. In Figure 60 the complete schema of ResoluteDS server side is

reported.

WWW: www.resolute-eu.org Page 72 of 109
Email: infores@resolute-eu.org

Figure 60. ResoluteDS Server schema

WWW: www.resolute-eu.org Page 73 of 109
Email: infores@resolute-eu.org

There are 5 packages, logically divided by operation’s type done: ClientServerInterface, Model,

ModelInstance, DBInterface and Util.

In the first the classes for interfacing client and server are present. These pick up the REST requests and

subsequently call the appropriate functions in the packages Model and ModelInstance. In these packages, there

are all the possible operations over the FRAM models and instances. The classes for makes these operations

are: ModelExtraOperationResource, ModelInstanceExtraOperationResource, ModelResource,

ModelInstancesResource.

In the package FRAMModel there are the classes for load on server the models, a new model, or to modify an

existent one. The main classes are FRAMModel, FMVModel, Function, Aspect, AspectForClient,

FunctionAspect, Group and ModelStore. The class FRAMModel contains the model’s identifier (id), the name,

a description and a variable size for the functions number in. Furthermore, the list of Functions, the list of Aspects

and the list of Groups are present . To keep track of the model’s history the creation date is present, and also the

date of the last modificatoin. The FMVModel is needed for translating a model created into FMV. The class

Function contains the variables: id, name, description, type for background or foreground (set only when a FMV

model is loaded) and the model-ID. For the information about the rendering these variables are present: x, y and

colour. In this resource is also present a list of Aspects that come from, or goe to that function. The class Aspect

contains the ID, the label and the model to which it belongs. The AspectForClient resource is, however, an

extension of the previous one and it also contains the specific information about the aspect: the source function,

the target function and the type, that is the role that the aspect plays in the relation. This class simplifies the

management of the model’s component with the client. FunctionAspect serves to connect the functions with the

aspects. It contains the function’s ID, the aspect’s id and the aspect’s type for that function. Group is like

Function but for the groups. It has the attributes: [id, name, description, colour, x, y, model-ID]. Moreover, there

is the list of functions and groups’ identifiers contained. Finally, the class ModelStore has been introduced for

temporarily storing the model on the server. Here are two array lists: FRAMmodels and

FRAMmodelsLoadedFromDB. The first is for the new models created by the user and not saved yet. The second

is for the models loaded from the DB. With the method in this class, it is possible to load any model by its id,

modify it and eventually save.

Going on, in the package ModelInstance there are the classes and the methods for managing the instances, like

for Model. The main classes are: FRAMModelInstance and FunctionInstance. These two functions extend the

structure of FRAMModel and Function with other data. The first introduces the description of the instance, while

the second holds more information about the functions: time precision, potential precision and the actor who

performs that function. The last one has to be improved by entering other information like: the template for

translating the model to SmartDS, the weight for the aspects, and the URL for the RDF’s data associated.

The package DBInterface provides the classes for interfacing with the relational database and with the RDF

store: ModelDBInterface, ModelInstanceDBInterface and RDFStoreInterface. The first contains the methods

for saving and retrieving the model’s data from MySQL. The second contains the same method as the first but for

the instances. Otherwise, RDFStoreInterface has two methods; executeQuery() and NotifyEndQuery(),

respectively for executing a SPARQL query in the RDFStore, and for notify the memorization of the function’s

result. Those two methods are implemented but not used, yet.

In the last package, Util, there are the classes: DebugClass and WriteXML. The first contains the methods

printModel() and printModelInstance() to print, on the server, the data of a model or of a specific instance. The

second implements the methods for writing the XML to send to the client.

WWW: www.resolute-eu.org Page 74 of 109
Email: infores@resolute-eu.org

Sequence Diagram for the models. Here are some sequence diagrams for explaining how the server side

manages some operations. The first diagrams are for the operations in the package Model, used for executing

the main functions on the FRAM models. The sequence in Figure 61 represents the steps for loading a model

from the DB by an authorized user. When a user asks for a specific model, the REST request is managed by the

method getModel in the class ModelResource. The last one calls the method loadModel of ModelDBInterface.

Now the FRAMModel is created with all its data and it is saved on ModelStore for manage the next request

directly on the server without the execution of queries on the DB.

Figure 61. Sequence Diagram for loading a model from the relational DB.

The operation for saving a model in the DB is reported in Figure 62. When the user sends the request for saving

the model, the call is managed by the server via the operation postOperation in the class

ModelExtraOperationResource. This propagates the request to the class ModelDBInterface with the method

saveModel().

Figure 62. Sequence Diagram for Save the model in the DB.

For the models’ instances, the sequence diagrams are similar to the previous one but managed by the class

ModelInstances.

The UML for the User module is reported in Figure 63. The class ManageUserInterface serves as interface

between the client application and the module for handling the users on the server side. It provides to the outside

WWW: www.resolute-eu.org Page 75 of 109
Email: infores@resolute-eu.org

the functions login(), logout(), and register(), respectively used to authenticate a user (guest, advanced, decision

maker or administrator), disconnect a user, or register a new one. Registering is possible only for an

administrator. The administrator can choose the priority level (advanced, decision maker or administrator) for the

new users. The User class holds the information about the user connected or to register and a vector of permits

to access at the models. The vector contains boolean elements that identify the singular permission (true if the

user can make that operation, or false).

Element 0. Model creation.

Element 1. Modify of a model present in the system.

Element 2. Modify of an own model created.

Element 3. Deleting a model from the system.

Element 4. Deleting an own model.

Element 5. Save a model.

Element 6. Loading a Model from a server.

Element 7. Loading an own Model created.

ManageUserDB has the methods for loading the user’s data during the authentication, or for saving the data for

a new registration. The methods that do this are respectively loadUser() and saveUser(). These functions are

automatically called by the User class once entered the user’s data: name, surname, nickname, password and

email. This is possible thanks to the methods setName(), setSurname(), setNickname(), setPassword() and

setEmail().

Figure 63. UML Diagram for the User Module.

In the Figure 64 the sequence diagram is represented for the registration of a new user in the system. The user

has to choose an available nickname (not already present), then enter the requested data in the registration form

and click ‘Register’. With the click event the function register() is called, thus passing the user’s parameters:

name, nickname, password, email and type=2 that set the user as advanced. After this, the constructor of the

superclass UserAdvanced is called to create the advanced user with their permissions. Finally the user is saved

in the DB with the function saveUser() in the class ManageUserDB.

WWW: www.resolute-eu.org Page 76 of 109
Email: infores@resolute-eu.org

Figure 64. Sequence Diagram for register a new user.

In the next figure (Figure 65) the sequence diagram is shown for the steps that an administrator has to do to

register a new user. This operation is divided in two steps: in the first, the administrator authenticates himself, in

the second he enters all the data for the new user to register and the user’s type. The client calls the function

login() of ManageUserInterface to extract from the DB the user’s information, if present. If the user is not present

in the system, the returned value identifies the type of error and the registration interface is disabled. If the user is

present, once obtained the information, a new element Administrator is created with the data of the new user

authenticated. This is needed for maintaining in the session the user’s information to keep it easily available and

editable. Once that an administrator has entered all the data for the user to register, a click on the Register button

calls the method register() with the entered data. Finally, through the class User, the ManageDB’s method

saveUser() is called to save the new registered user in the DB.

Figure 65. Registration of a new user by the administrator.

WWW: www.resolute-eu.org Page 77 of 109
Email: infores@resolute-eu.org

7.5 Client Side

The client side manages the information about the user and the representation of FRAM models provided by the

Server. It also handles the requests for the operations that a user can do on the server.

User accesses into Resilience DS with the login window as registered or as a guest. Based on the user

typologies there are different functionalities that he can do. After the login, the main menu is displayed, with the

features available based on the user’s privilege. For the administrator, that has the maximum level of priorities, is

possible to:

• Create new models and new instances.

• Visualize models and instances, also of other users. This is the only feature available for all usertypes.

• Save models and instances.

• Load models and instances.

• Delete models and instances.

• Handle users’ permissions.

Creation of new models and instances. When a user requests to create a new model, the tool provides a

window for inserting the model’s name and description. After that a new frame is created with an editable starting

function. All the functions\actions can be added that are needed to manage the C.I. system. Each of this actions

is represented by the classical FRAM hexagon, with name, description and colour editable. Contrary to the FMV,

each function is identified by an id, so it is possible to give the same name to different blocks.

Figure 66. Function’s SVG structure.

For each action it is also possible to specify the aspects, with the name and the type. We have five types of

aspects input: Input (I), Precondition (P), Resource (R), Control (C) and Time (T). There is also one Output (O)

that can link together 2 or more functions. It is possible not to provide both aspect’s source and target, but only

one of these. In that case, the relative function’s circle of the aspect is highlighted and the label for the missed

link is provided. Links can be entered in the function’s edit menu or directly by tracing the link from two hexagons.

WWW: www.resolute-eu.org Page 78 of 109
Email: infores@resolute-eu.org

For coherence with the FRAM’s theory, some controls are provided. It is not possible to add two aspects for

linking two inputs (input, precondition, time, control or resource) or two outputs. The link is graphically built with a

quadratic Bezier’s curve by a svg:path.

Figure 67. SVG code for an arch. The orange inputs of the functions represent missed aspects (Aspects with only the target or
the source).

A user can also create the group element, useful to group together similar functions. This cluster is like an action

element in terms of attributes, in fact it has a name, a description and a colour. A group can contain as many

functions as the user wants and also other groups, but not vice versa. A function can be part of only one group,

not two different groups.

Figure 68. SVG code for a group.

WWW: www.resolute-eu.org Page 79 of 109
Email: infores@resolute-eu.org

Practically the groups are like macro functions which allow for setting aspects. This option has some constraint, in

fact each aspect has to be connected to the group’s functions. For this reason, it is not possible to have aspects

for an empty group. All the aspects that go from the broad to the group’s functions are grouped and shown with a

single arch. Instead, the link between functions in the group is hidden. For usability, a function has been

implemented for showing (on click) the group’s components in the graph. The eye over the group is the feature’s

trigger.

The instance creation is like the previous. Resilience DS provides a window for enter the objective and then loads

the model to analyse. The model is not editable from the instance, it’s possible to move the elements but just

temporarily until the next load. However, it is possible to set the variability of each function. Groups don’t have

their variability, but they reflect their components.

Visualization of models and instances. This is the only option present for all kinds of users. This option permits

to display a FRAM model among those saved in the DB.

Save of models and instances. The models could be saved at any moment, even during the work. The models

and the instances are saved in the DB and temporarily on the server for retrieval without any queries.

Loading and reediting of models and instances. This menu item permits to choose a model or an instance

from the list and load it for editing the structure. The user can do one of the following operations on a loaded

model.

• Add or delete functions.

• Add or delete groups.

• Add or remove functions and groups in a group.

• Modify the parameters of a function: name, description or colour.

• Add or delete aspects from a model.

• Modify an existent aspect: the label, the source, the target or the type.

For an instance, during the modification is possible to:

• Change the function’s handler.

• Change the function’s time precision.

• Change the function’s potential precision.

Deleting models and instances. Only a user with the respective privilege can delete saved models. Once that a

model is deleted it cannot be recovered because all the relative data are deleted from the DB. All the linked

functions, aspects and instances to the model deleted are also deleted. Additionally, a single instance can be

deleted.

Manage User’s permission. The administrators can manage the users’ permissions and have the possibility to

modify their user type variable.

Application. The client side application has been developed in JavaScript with the D3 graphical library and the

jQuery framework.

The D3 library, available at (D3 2016) allows binding arbitrary data to a Document Object Model (DOM), and

then apply data-driven transformations to the document. For example, it is possible to use D3 to generate an

HTML table from an array of numbers. It is also possible to use the same data to create an interactive SVG bar

chart with smooth transitions and interaction. D3 is not a monolithic framework that seeks to provide every

WWW: www.resolute-eu.org Page 80 of 109
Email: infores@resolute-eu.org

conceivable feature. Instead, D3 solves the crux of the problem: efficient manipulation of documents based on

data. This avoids proprietary representation and affords extraordinary flexibility, exposing the full capabilities of

web standards such as HTML, SVG, and CSS. With minimal overhead, D3 is extremely fast, supporting large

datasets and dynamic behaviours for interaction and animation. D3’s functional style allows code reuse through a

diverse collection of components and plugins.

jQuery, (jQuery 2016), is a fast, small, and feature-rich JavaScript library. It makes things like HTML document

traversal and manipulation, event handling, animation, and Ajax much simpler with an easy-to-use API that works

across a multitude of browsers. With a combination of versatility and extensibility, jQuery has changed the way

that millions of people write JavaScript.

The client application is structured in levels, shown in Figure 69. At main level, we have the system folder and the

.html, .jsp files for the user interface. The application folder is composed of:

• CSS: contains the style sheet (.css files) for the graphical management of the interface’s elements.

• Fonts: provides the fonts utilized.

• Image: is the folder where all the images used in the application are saved.

• Js: contains the JavaScript necessary for the interface to behave correctly.

• Lib: this folder rallies all the external libraries (d3, jquery) necessary for the tool.

• META-INF / WEB-INF: are intern folders of the system.

Figure 69. ResoluteDS project’s files.
Figure 70. ResilienceDS, JavaScript files that provides all the
tool's functions.

The components of the js folder are shown in Figure 70. There isthe data folder containing the data structure for

the models and the instances. The graphics folder has an important role for managing the graphical interface for

the structure visualized. All the operations over the functions, aspects and groups are handled by

operations_model.js, operations_node.js, etc. httprequest manages the REST requests and responses. For the

WWW: www.resolute-eu.org Page 81 of 109
Email: infores@resolute-eu.org

utility functions (like the undo and the XML creation) and for the graphical operations there are respectively, the

util and the view folders. In the file configVar.js there are the configuration variables for the application. Last,

there is client.js which is dedicated to making the REST requests to the server.

7.6 Resilience DS UI

The state of the art of FRAM-based tools is well represented by FRAM Model Visualizer (FMV) [27]. The FMV is a

FRAM editor that supports the FRAM model design. The FMV tool is only focused on realizing pdf documents

generating the tables used to provide the descriptions of the functions and the aspects. The FMV tool does not

support any kind of computations or consistency check, and remains at descriptive level without providing

computational aspects. Other tools, such as Cambrensis [25], adopt similar approaches by adding some

operational aspects with limited capabilities as described in the following. The Resilience DS tool presents a

number of improvements with respect to the classical FRAM model and FMV tool such as:

• Increasing model expressiveness by allowing the hierarchical modelling of FRAM functions, introducing the

Macro FRAM Function, MFF (described in the following).

• Introducing a number of rule based formal checks to assess the completeness, consistency and the

complexity of Functions, and MFF; They can be used to guide the designer and the experts to create

complete and consistent modelling and dedicating more attention to more complex aspects.

• modelling the outputs of a FRAM function as a Bayesian Decision Support process. For example, exploiting

System Thinking (http://smartds.disit.org) approach.

• Connecting the FRAM function output estimation on the basis of a connection to real data from the smart city

and critical infrastructure data (statistical and/or real time data as well).

This set of improvements has transformed the FRAM model to an operational paradigm allowing the operational

execution of the model in real time according to the changes occurring in the city on the basis of the events.

7.6.1 Resilience DS Features.

In Figure 71, the Resilience DS tool is presented showing the editor for FRAM and Macro FRAM Functions

(MFF).

Figure 71. Resilience DS: FRAM and Macro FRAM Functional Tool editor. A simple example with 8 functions and 2 groups.

The Resilience DS allows creating a FRAM Model providing:

• a name and a description, and

• a combination of

http://smartds.disit.org/

WWW: www.resolute-eu.org Page 82 of 109
Email: infores@resolute-eu.org

o FRAM Functions as hexagons;

o MACRO FRAM Functions, MFF, as hexagons with double line border (modelling internal subgraphs

of FRAM Functions as hexagons). Each Functions as hexagons presents 6 Aspects: I, P, R, O, T,

C;

• a set of links connecting vertex of the hexagons.

According to the FRAM model:

• Function Type: who performs the function, it can be a person (‘Human’), a group of persons (‘Organization’)

or otherwise a ‘Technological’ part.

• Potential Output variability with regard to Time: the possible values are ‘Too Early’, ‘In Time’, ‘Too Late’ or

even ‘Not at All’ when it’s not sure that the function can complete in the expected time.

• Potential Output variability with regard to Precision, which can be: ‘Precise’, ‘Acceptable’ or ‘Imprecise’.

Several Outputs can be defined, and can be produced by a FRAM Function.

To study the behaviour of a model with respect to its variability, the Resilience DS provides the instances. When

an instance is created, it is always possible to change the model, without loss of information, except for the

function eventually deleted. Thus, the Resilience DS allows creating a hierarchical FRAM model.

A Resilience DS hexagon (Function or Macro Function) has attributes, like: name, a description and colour.

Figure 72. Function in Resilience DS. The Window reports the function's info (for the green one): name, description, colour and
the aspects divided by typology. The aspects with source or target undefined are highlighted and a label is shown on click.

Once created, the user can delete or edit it (with the pencil icon or by double clicking the function). The Figure 72

shows the information panel, that is the same for the editing. The links can be created on the edit panel of a

function, or by dragging the link from the circle that corresponds to the aspect selected, to the entryway of

another function.

WWW: www.resolute-eu.org Page 83 of 109
Email: infores@resolute-eu.org

Figure 73. The Resilience DS creation of an aspect.

The Aspects are visualized on the screen and reported on the function’s edit page, where it is also possible to

modify or delete them. In FRAM, each link has always a source and a target Function aspect. The only links that

may provide a missing terminal are those that have to be closed with the external information. Naturally, it is not

possible to create a connection between two inputs (Like from a Precondition to a Resource) but only from an

Output to one input, or vice versa. Therefore, it is possible that a function’s Output goes into different functions or

in the same but in various entries. The Resilience DS tool controls the model’s completeness and consistency,

and avoids user’s distractions or other wrong behaviours, like duplication of aspects. Each function has a different

identifier; also the aspects have an ID. This, fact is a major difference with respect to FMV where the links are

univocally identified by their names. In our case, a link is identified by a unique number, and considering that the

same link can be shared among many Functions (and Aspect), in the visualization is managed with the

quadruple:

{ID, source Function, target Functions, target Aspect}.

The last one is the entryway’s type (Aspect) of the Function. The FRAM Function vertex output is the only source

for any other of the five Function’s inputs (Aspects) to other hexagons. So, it is not discriminant for linking (the

source Function is always the Output Aspect).

In order to improve FRAM modelling expressivity and capability of managing complexity by using FRAM graphs,

a Macro FRAM Function (MFF), concept has been created. The MFF is used to reorganize connected Functions,

for example those that interest the same C.I., or which are addressed by the same organization. In Figure 74 is

shown how to create a group and what it looks like. In the example, representing the management of an

emergency call by the 115 (the Italian fire-fighters, VVF), the 2 functions of 115 can be grouped and handled

together. The correspondent MFF, ‘VVF management’, is created.

The Functions can be added just dragging and dropping them into the group. An MFF is like a mini-model or a

macro-function that can be split in sub components. The only constraint for maintaining consistency in the model

is that this object doesn’t have its own aspects. So when we try to add a new aspect, the tool asks to choose a

component of the group. If the cluster is empty, the program returns an error message. It is possible to add links

between the functions of a MFF. These are only internally displayed. Whereas, aspects that come from a function

outside to another one inside the group are grouped by the Aspect selected, and shown like entering the group.

Once created the user can edit and delete MFFs. Figure 75 shows the steps to add the two 115’s functions in the

MMF. The visualization is constantly updated.

WWW: www.resolute-eu.org Page 84 of 109
Email: infores@resolute-eu.org

Figure 74. Group Creation. In the example is created the group 'VVF Management' that handle the fire brigade actions.

The attributes of MFF are: name, description and colour. Inside an MFF it is possible to have functions but also

other groups as well. This implements a multi-level hierarchy in the model. As a constraint, an MFF can belong to

at most one other MFF and it cannot be inside two different on the same level.

Figure 75. Add functions into a group. In the first frame (-I- on the top-left) is dragged the function ‘115 Actions’ into the group.
During the move for each group is showed a hull around the group and when a functions enter the hull is linked with the group to

The Figure 76 shows all the options and measures enabled for the MMF, most of them are similar to the

Function. In the hexagon the number of functions and links of the group are reported. On top of it, there are the

options to edit and delete it and also to show the functions inside. The last option creates a hull containing the

actions and the groups of the MMF and shows the existent links. From the edit panel, it is also possible to add a

function, or an aspect coherently with the FRAM constraints.

WWW: www.resolute-eu.org Page 85 of 109
Email: infores@resolute-eu.org

Last, the delete option allows to delete the MMF with all its contents, or to delete only the group and keep the

functions inside.

Figure 76. Group’s Options. -1- and -2- reports respectively the number of links and functions for the group. -3- are the edit and
delete options. Clicking on edit, the editing window is displayed and reports all the info of the group: name, description, colour, f

The result is a simplified view, but at any time it is possible to show the functions inside a MFF/group without

deleting it, just clicking on the eye icon over the relative hexagon. Above, we have reported an example of the

utility of this feature. Let us consider the FRAM model created in the European Resilience Management

Guidelines (Bellini, Gaitainidou e Fereira 2016). The model has been imported into the Resilience DS, as showed

in Figure 77. All the properties of the functions and aspects, like; name, description, colour, as well as positions

are the same of FMV. The only things changed are the identifiers of the elements. This model can be very

concentrated and messy.

Figure 77. ERMG model. This is the model imported from FMV as it is. The function’s properties are maintained; name, colour,
description and also the position in the graph.

With hierarchy is possible to reduce the number of functions showed and consequently the links, as

demonstrated in Figure 78.

WWW: www.resolute-eu.org Page 86 of 109
Email: infores@resolute-eu.org

Figure 78. ERMG model with groups.

The models created are saved on the server and can be edited by the creator and shared among the users. For

each Resilience DS model, it is possible to create one or more instances by providing real values and

parameters. An instance is a real implementation of the model where it is possible to figure out behaviours, errors

and to analyse resonance among the functions. Each function can be edited for setting the type of variability.

Figure 79. How an Instance looks like in ResilienceDS. The wave on a function
indicates that is effected by variability.

Figure 79 contains an instance example for a coffee machine. The

instantiation refers to a problem in the water supply that affects the

entire model, especially the coffee preparation.

The Resilience DS model extends the FRAM classical model. Each

output process can be operationalized by a computable function based

on the function’s inputs. In the Resilience DS, each process is modelled

by means of the SmartDS.disit.org process, which adopts an extended

System Thinking Approach [26].

Figure 80 List of models for the user
logged in.

WWW: www.resolute-eu.org Page 87 of 109
Email: infores@resolute-eu.org

The Resilience DS provides many functions and options. When a user logs in the tool, it offers the list of model

beforehand created and saved, as showed in Figure 80. In this list the instances created and the other users’

projects are also present. The first element allows creating a new model.

When a model is selected, it is shown with all its actions and aspects on the main frame. At the top of the

functions, there are the options for editing, deleting and, only for the group, for showing the elements within.

Figure 81. Options for functions and groups. For the actions we have, starting from the left: edit and delete. For the groups: edit,
delete and show. On the right are reported the elements’ options during the visualization: info for functions and info and show fo

There are also mouse triggers to speed up the user modelling experience, like: focus a function connection with

mouse over, focus the extreme of an aspect with mouse over the label, edit functions and groups with double

click and creating aspect with just the drag from the hexagon vertices.

Figure 82. User’s panel. Over the logout option there is the admin panel with the information about the user in the left frame. In
the centre is possible to modify own credential, like email, name etc. The third section is only available for the admins and permit

The tool allows for the management of multiple users. With that is possible to register new users,

login/logout with the own account, or access as a guest for view available models (see Figure 82).

The Resilience DS tool provides the options for: view in full screen the graph, centre the model at

the origin, zoom in, out and reset the visualization (this is also possible scrolling the mouse’s

wheel), print the current model and show/hide the aspects for focus only over the functions. In

Figure 83 is shown the right menu.

In the bottom menu are reported the model’s information: name, description, user owner, creation

and last modify date. From there is possible to edit the model info and view the XML structure (The

information sent from the server to the client when the model is requested). There are also 3

indexes for the graph:

WWW: www.resolute-eu.org Page 88 of 109
Email: infores@resolute-eu.org

• Volume: is the total number of functions in the model.

• Cohesion: is how much the model is connected with others. It is obtained by the

formula: 𝑪𝒉 =
𝑁𝑎

𝑁𝑓
. Where: 𝑵𝒂 is the number of aspects and 𝑵𝒇 the number of

functions. In the instance reported above we have the cohesion as:

𝑪𝒉 =
13(𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑎𝑠𝑝𝑒𝑐𝑡𝑠)

6
= 2,16667

• Complexity: The complexity for the model is the max number of functions for a group. Exactly: 𝑶 =

max
𝑖=0…𝑁𝑔

𝐺𝑖 . Where: 𝑵𝒈 is the number of group and 𝑮𝒊 the number of functions in the i-th group. In the

example we have a MMF that contains 3 functions, the one exploded.

Figure 84. Bottom menu with all the information about a model loaded.

When a model is requested to be shown, from the top menu the following is possible: edit the model, delete the

model and import a new FMV model to modify or test. While editing a model, a top menu is displayed that allows

the user to undo and forward the basic operations (Precisely: add/remove/modify of functions, aspects and

groups and add, remove functions in groups). Last, there is the export button, for exporting a function from the

Resilience DS to SmartDS. This feature, actually provided only for the users of both the tools, shows the

obtainable functions to export and then the output available as a goal. The exported graph is automatically

imported into SmartDS. During modelling there are other options on this menu, useful for editing. With these, it is

possible to undo, or redo some basic command like: create, modify and delete of functions, groups and aspects.

These are supposedly useful for backtracking. The other two buttons allow creating new functions and MMF.

Figure 85. Menu for models management. The first group of icons, from left to right, are for: collapse the models list, edit a
model/instance, delete a model/instance, import an FMV’s project and export to SmartDS a function for measurement of
probabilities. The second group of icons represent: undo/redo actions, add new function, add new group.

7.6.2 Analysis and comparison with other tools.

Here a comparison between Resilience DS and FMV is reported, regarding the modelling tool.

Table 10. Comparison table between main features of Resilience DS and FMV

FEATURES Resilience DS FMV

MODELING

FRAM modelling Y Y

Functions and Aspects identified univocally Y (1) Y (6)

Modelling registration N Y

Export a Model for simulation Y N (7)

Provide instances for the models Y N

Count number of elements Y N

Provide graph indexes Y (2) N

Show missed aspect Y (3) Y

Hierarchy in the model Y N

Figure 83 Right
Menu for the
visualization.

WWW: www.resolute-eu.org Page 89 of 109
Email: infores@resolute-eu.org

GENERAL MANIPULATION

Undo action Y N

Zooming the graph Y Y (8)

centring the graph Y N

Save and Load Y (4) Y (9)

Panning Y Y

Show/Hide the aspects Y N

Share Y N (10)

Show/Hide the functions in a group Y N

Full screen Y Y

Show aspect’s label Y Y

Highlight selected function Y (5) Y

Switch to next function N Y

NON FUNCTIONAL

Web tool Y N

Change Language N Y

Print the model Y Y

User differentiation Y N

1. In Resilience DS the functions and the aspects are identified by univocal ID integers,.

2. Three Indices are provided for the model Resilience DS: Volumes, Cohesion and Complexity.

3. Resilience DS like FMV highlight the entry of the missing links but also provides a label that display the

aspect’s name.

4. In Resilience DS the model is saved in the DB.

5. In Resilience DS is also possible to highlight the aspect just going with the mouse over the name.

6. In FMV the functions are identified by a univocal id, but the aspects with their name. This can create

ambiguity during complex modelling if a name is already used.

7. In the FMV official version is not provided a way to export the model, but there is a version modified by

CAMBRENSIS that export a model into iDEPEND.

8. In FMV is possible to zoom the editor only with the buttons and not with the mouse’s wheel.

9. FMV save the model locally in the user’s PC.

10. In FMV there is not any system included for directly sharing a newly created model . However, it is possible

to share the file of the model created.

Concluding, we report the principal differences between the two tools presented in Table 11: FRAM with SimPy

by Van Kleef and FRAM with iDEPEND by CAMBRENSIS [25][26], and Resilience DS with the SmartDS

application [30].

Table 11. Resilience DS, Kleef (SimPy) and CAMBRENSIS (iDEPEND) differences.

 Resilience DS SimPy iDEPEND

Non Functional

License Open Source There isn’t an
available tool

No Open Source

Web Based Tool
(Programming

language)

Y
(Java + JavaScript +
MySQL)

N
(Python)

Y
(PHP and JavaScript)

WWW: www.resolute-eu.org Page 90 of 109
Email: infores@resolute-eu.org

Available online Y
Best with Mozilla
Firefox, Google
Chrome.

N Y
Best with Mozilla Firefox,
Google Chrome or later
versions of Internet Explorer
(version 10 or above).

People involved.

-Everyone (Experts in
the field, Decision
maker or even private)

-Experts in the
field
-Decision maker

-Everyone (Experts in the field,
Decision maker or even
private)

Space < 100MB SimPy < 500KB ?

User distinction Y N Y (Based on the registration).
Two typologies, one for Trial
version (Limited for 2 models,
and 30 entities). One
commercial with no limit of
models and entities plus other
features.

Modelling

Type of simulation - Modified version of
Analytical Hierarchical
Process (AHP)

-SimPy
-Monte Carlo

-Bayesian Belief Nets (BBN)
-Monte Carlo

CI system
representation

Decision Tree Block Diagram Decision Tree

Nodes role -The Root of the tree is
the goal function’s
output.
-The other criteria are
the aspects of the
functions

FRAM Functions -The Root of the tree is the
goal function’s output
-The other nodes are the
aspects of the functions.

Branches role Links between
aspects. Each branch
has a weight defined
by the comparison
matrix

Link between the
functions

Links between aspects. Each
branch has weight (By default:
And, Or and custom).

Functionalities and
application fields

-Decision Support
-Dependency
Modelling
-Quantitative FRAM
analysis

-Decision Support
-Dependency
Modelling
-Qualitative FRAM
analysis

-Decision Support
-Dependency Modelling
-Quantitative FRAM analysis

Follow Van Kleef’s
rules

N (1) Y Y

General Model handling

Visualization 2D 2D 2D

Locate on map the
model

N - Y

Link external
sources

Y - Y (With only the pay version)

Save/Load Model Y Y Y

Share Model Y - Y (Also follow a model)

WWW: www.resolute-eu.org Page 91 of 109
Email: infores@resolute-eu.org

Export model and
results

Y - Y (JPG - XML – FRAM
modified model)

Share Entity
among models

N - Y

Group/Sort entity Y - Y

FRAM Template Y - Y

Move - Delete
entity

Y - Y

Zoom and panning Y - Y

Entities
differentiation

Y - N

Model Editing

Visualize
interrelationship

Y (2) Y Y

Compatibility with
other tools

Y (3) - Y (The results can be exported
in FMV)

Reports: Fail
Mode, Three

Sensitivity Model
and

N - Y

Reports:
Probabilities

values

Y - Y

Manage Cycles Y - -

1. The Resilience DS actually doesn’t follow the Van Kleef’s rules [31]. For example, with the current SmartDS

architecture is not possible to have preconditions nodes that specify if a function work or not. However, it is

currently possible refer to different time stamp and realize it with some effort.

2. It is possible to visualize the functions interdependencies by switching to Resilience DS. The others are not

as clear.

3. The Resilience DS is compatible with SmartDS but there are other tools for improving the performances, like

Km4City and DashBoard.

WWW: www.resolute-eu.org Page 92 of 109
Email: infores@resolute-eu.org

8 CONCLUSIONS

This deliverable presents the outcomes of the Task 5.2 that is the CRAMSS application. The main aim of the

work was the implementation of a collaborative workspace, in which DSS operators of the UTS can share their

outputs of or information about their work among each other, facilitating them thus in decision making. In this

sense, several DSSs related to the UTS were developed as well as a user-friendly front-end interface that helps

the UTS operators manage them easily. The implemented DSSs were developed so as to utilize the ESB (D4.4)

for exchanging valuable information among them. Thus, the integration of all the separate DSSs was achieved.

The development of the front-end interface was based on the recommendation described in D5.2 while the whole

application was implemented considering the ERMG described in D3.5. Finally, the communication between the

ESSMA (D5.4) and the CRAMSS was established allowing thus the direct communication of the UTS decision

makers and the citizens.

The CRAMSS application supports the main objectives of the RESOLUTE project. The developed application

increases the UTS resilience in every day conditions as well as during crises. Through its highly synergic

approach the CRAMSS provides a mean for the exchange of valuable information among all stakeholders

involved in UTS resilience management, facilitating thus the coordination of all actions and the early decision

making. The CRAMSS system manages to address the following objectives of the RESOLUTE project:

• Obj.3.1: The CRAMSS system has been developed in such a way so as to be smoothly deployed in the

pilot sites in Y3 covering the current infrastructure requirements and extending the future operator's

capability's with beyond SoA technologies, as presented above.

• Obj 3.2: The CRAMSS system is aggregating big data sources through the "over the ESB" & "over the

Data layer" data integration.

• Obj 3.3: Through the Twitter Vigilance tool, WIFI people behaviour tracking and the communication with

the ESSMA, the CRAMSS is able to gather crowd sourced/sensed information (e.g. annotations,

comments, news about the city, etc.) regarding the emergent events within the city.

• Obj 3.4: the system benefits of the semantic –based data integration and processing to enhance the

information value managed by the system. The resilience based ontology approach organises the big

data generated by the UTS and the city as a whole to exploit semantic relationships that can reveal

hidden interdependencies.

• Obj 3.5: The system supports data mining and predictive modelling on human behaviour on the ground

as well as analysis of data collected for the IoT sensors and traffic.

• Obj 3.6: Through the eDSS and the ESSMA the system is capable of identifying individuals or groups of

individuals as voluntary rescuers or to-be-rescued, assigning the appropriate task to each taking into

account multi-dimensional criteria, such as spatiotemporal context, users’ profiles, etc.

• Obj 3.7: The system allows the continuous monitoring of the city and the happening events. The

operators are informed through the Dashboard about new emergent events or the evolution of the

already happening. Moreover the system is able to make suggestions (e.g. evacuation routes) in order

to minimize the impact of the events.

• Obj 3.8: Through the communication with ESSMA the system can timely communicate with the crowd in

order to inform and guide them properly about the happening events. Furthermore the CRAMSS is able

to receive feedback from the citizens regarding the emergency.

• Obj 3.9: The system supports the decision making of the UTS stakeholders through its three interactive

and user friendly UIs. Through the latter coherent and meaningful information are displayed to the

operators.

WWW: www.resolute-eu.org Page 93 of 109
Email: infores@resolute-eu.org

• Obj 4: The system communicates with the game based training app (GBTA), which provides an

entertaining way for the citizens to be familiar with ESSMA and the proper way of acting during

emergencies. By assigning specific roles and tasks the GBTA evaluate its users helping thus to the

training of the latter.

Following the outcomes of this deliverable the deployment of the CRAMSS system in the real pilot sites and its

validation from real world operators have to be done.

WWW: www.resolute-eu.org Page 94 of 109
Email: infores@resolute-eu.org

APPENDICES

Annex I

Example Request:

GET --header 'Accept: application/json' 'http://192.168.55.75:8088/rest/v1/detectionunits/6f796196-5ca7-4546-ad84-

17ae79224e4b/measures?token=1234&fromDate=2016-06-07T15:00:00Z&toDate=2016-06-09T16:00:00Z'

Example Response:

RESPONSE CODE: 200

RESPONSE HEADER:

{

 "access-control-allow-origin": "*",

 "date": "Wed, 08 Jun 2016 16:49:02 GMT",

 "server": "Microsoft-HTTPAPI/2.0",

 "transfer-encoding": "chunked",

 "content-type": "application/json; charset=utf-8"

}

RESPONSE BODY:

{

 "Measures": [

 {

 "MeasureTimeUTC": "2016-06-08T15:45:00Z",

 "Sensors": [

 {

 "Data": [

 {

 "Group": null,

 "Key": "VOLUME",

 "Value": "20"

 },

 {

 "Group": null,

 "Key": "SPEED",

 "Value": "50"

 },

 {

 "Group": null,

 "Key": "OCCUPANCY",

 "Value": "0"

 },

 {

 "Group": null,

 "Key": "ACCURACY",

 "Value": "0"

 },

 {

 "Group": null,

 "Key": "GAP",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "HEADWAY",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "LENGTH",

 "Value": "-1"

 }

]

WWW: www.resolute-eu.org Page 95 of 109
Email: infores@resolute-eu.org

 },

 {

 "Data": [

 {

 "Group": null,

 "Key": "VOLUME",

 "Value": "30"

 },

 {

 "Group": null,

 "Key": "SPEED",

 "Value": "60"

 },

 {

 "Group": null,

 "Key": "OCCUPANCY",

 "Value": "0"

 },

 {

 "Group": null,

 "Key": "ACCURACY",

 "Value": "0"

 },

 {

 "Group": null,

 "Key": "GAP",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "HEADWAY",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "LENGTH",

 "Value": "-1"

 }

]

 }

]

 },

 {

 "MeasureTimeUTC": "2016-06-08T15:50:00Z",

 "Sensors": [

 {

 "Data": [

 {

 "Group": null,

 "Key": "VOLUME",

 "Value": "20"

 },

 {

 "Group": null,

 "Key": "SPEED",

 "Value": "50"

 },

 {

 "Group": null,

 "Key": "OCCUPANCY",

 "Value": "0"

 },

 {

 "Group": null,

 "Key": "ACCURACY",

 "Value": "0"

 },

WWW: www.resolute-eu.org Page 96 of 109
Email: infores@resolute-eu.org

 {

 "Group": null,

 "Key": "GAP",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "HEADWAY",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "LENGTH",

 "Value": "-1"

 }

]

 },

 {

 "Data": [

 {

 "Group": null,

 "Key": "VOLUME",

 "Value": "30"

 },

 {

 "Group": null,

 "Key": "SPEED",

 "Value": "60"

 },

 {

 "Group": null,

 "Key": "OCCUPANCY",

 "Value": "0"

 },

 {

 "Group": null,

 "Key": "ACCURACY",

 "Value": "0"

 },

 {

 "Group": null,

 "Key": "GAP",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "HEADWAY",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "LENGTH",

 "Value": "-1"

 }

]

 },

 {

 "Data": [

 {

 "Group": null,

 "Key": "VOLUME",

 "Value": "20"

 },

 {

 "Group": null,

 "Key": "SPEED",

 "Value": "50"

WWW: www.resolute-eu.org Page 97 of 109
Email: infores@resolute-eu.org

 },

 {

 "Group": null,

 "Key": "OCCUPANCY",

 "Value": "0"

 },

 {

 "Group": null,

 "Key": "ACCURACY",

 "Value": "0"

 },

 {

 "Group": null,

 "Key": "GAP",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "HEADWAY",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "LENGTH",

 "Value": "-1"

 }

]

 },

 {

 "Data": [

 {

 "Group": null,

 "Key": "VOLUME",

 "Value": "30"

 },

 {

 "Group": null,

 "Key": "SPEED",

 "Value": "60"

 },

 {

 "Group": null,

 "Key": "OCCUPANCY",

 "Value": "0"

 },

 {

 "Group": null,

 "Key": "ACCURACY",

 "Value": "0"

 },

 {

 "Group": null,

 "Key": "GAP",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "HEADWAY",

 "Value": "-1"

 },

 {

 "Group": null,

 "Key": "LENGTH",

 "Value": "-1"

 }

]

 }

WWW: www.resolute-eu.org Page 98 of 109
Email: infores@resolute-eu.org

]

 }

]

}

Annex II

{

 "$schema": "http://json-schema.org/draft-04/schema#",

 "type": "object",

 "properties": {

 "timestamp": {

 "type": "integer"

 },

 "positions": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "ap": {

 "type": "string"

 },

 "lat": {

 "type": "string"

 },

 "lng": {

 "type": "string"

 },

 "id": {

 "type": "string"

 },

 "train": {

 "type": "string"

 },

 "dir": {

 "type": "string"

WWW: www.resolute-eu.org Page 99 of 109
Email: infores@resolute-eu.org

 }

 },

 "required": [

 "ap",

 "lat",

 "lng",

 "id"

]

 }

 }

 },

 "required": [

 "timestamp",

 "positions"

]

}

Annex III

Example Strategies:
<strategies>
 <timestamp>2016-02-13T17:51:00</timestamp>
 <strategy>
 <description>test</description>
 <priority>8</priority>
 <activationtype>automatic</activationtype>
 <activationrules>
 <activationthreshold>50</activationthreshold>
 <daysofweek>1234567<daysofweek>
 <timesofday>
 <timeofday>
 <starttime>07:00</starttime>
 <endtime>19:00</endtime>
 </timeofday>
 </timesofday>
 <dates>
 <date>
 <startdate>2017-01-01</startdate>
 <enddate>2017-31-12</enddate>
 </date>
 </dates>
 </activationrules>
 <currentmembership>47</currentmembership>
 <controlpoints>
 <controlpoint>
 <objecttype>DETECTOR</objecttype>
 <description>Via Dante</description>
 <measuretype>Volume</measuretype>
 <functiontype>RAMP-UP</functiontype>

WWW: www.resolute-eu.org Page 100 of 109
Email: infores@resolute-eu.org

 <threshold1>1700</threshold1>
 <threshold2>2000</threshold2>
 <priority>3</priority>
 <observed>TRUE</observed>
 <currentmemebership>47</currentmemebership>
 </controlpoint>
 </controlpoints>
 <actionpoints>
 <actionpoint>
 <objecttype>VARIABLE_MESSAGE_SIGN</objecttype>
 <description>Via Dante</description>
 <command>MESSAGE</command>
 <commandparameters>
 <commandparameter>
 <key>MESSAGE</key>
 <value>Test message</value>
 </commandparameter>
 </commandparameters>
 </actionpoint>
 </actionpoints>
 </strategy>
</strategies>

Example Events:
<a:MisticEventDto>
 <a:arcId xmlns:b="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
 <b:int>3770</b:int>
 </a:arcId>
 <a:archived>1</a:archived>
 <a:bearing i:nil="true"/>
 <a:creatorUserId i:nil="true"/>
 <a:datex2Status>1</a:datex2Status>
 <a:directionName i:nil="true"/>
 <a:eventCode>EVT:20161220142145065</a:eventCode>
 <a:eventInstanceId>4082</a:eventInstanceId>
 <a:eventSubtypeId>9</a:eventSubtypeId>
 <a:eventTypeId>1</a:eventTypeId>
 <a:locationType>2</a:locationType>
 <a:mpkCountryCode i:nil="true"/>
 <a:mpkGeocode i:nil="true"/>
 <a:mpkHouseNumber i:nil="true"/>
 <a:mpkPlace i:nil="true"/>
 <a:mpkPostCode i:nil="true"/>
 <a:mpkRegion i:nil="true"/>
 <a:mpkStreetName i:nil="true"/>
 <a:notes i:nil="true"/>
 <a:placeName/>
 <a:predicted>0</a:predicted>
 <a:priority>0</a:priority>
 <a:roadCode i:nil="true"/>
 <a:roadName i:nil="true"/>
 <a:secondPlaceName i:nil="true"/>
 <a:severity>10</a:severity>
 <a:simulated>0</a:simulated>
 <a:situationId i:nil="true"/>
 <a:source>Da operatore</a:source>
 <a:srs>epsg:4326</a:srs>
 <a:startTime>2016-12-20T14:21:00</a:startTime>
 <a:status>C</a:status>
 <a:stopTime i:nil="true"/>
 <a:streetName>E45</a:streetName>
 <a:supplierCode i:nil="true"/>
 <a:tmcCid i:nil="true"/>
 <a:tmcDirection i:nil="true"/>
 <a:tmcPriDistance i:nil="true"/>
 <a:tmcPriPointLcd i:nil="true"/>
 <a:tmcRoadLcd i:nil="true"/>

WWW: www.resolute-eu.org Page 101 of 109
Email: infores@resolute-eu.org

 <a:tmcSecDistance i:nil="true"/>
 <a:tmcSecPointLcd i:nil="true"/>
 <a:tmcTabCd i:nil="true"/>
 <a:updateTime>2016-12-20T14:21:45.25</a:updateTime>
 <a:valid>1</a:valid>
 <a:validFrom>2016-12-20T14:21:45.25</a:validFrom>
 <a:validTo>2016-12-27T09:04:36.187</a:validTo>
 <a:validatorUserId i:nil="true"/>
 <a:visible>1</a:visible>
 <a:x>11.9788161278</a:x>
 <a:y>57.7155278043</a:y>
</a:MisticEventDto>

WWW: www.resolute-eu.org Page 102 of 109
Email: infores@resolute-eu.org

Annex IV

<?xml version="1.0" standalone="yes"?>
<FM Version="0,0,2,0">

 <Functions>
 <Function fnStyle="0" Tp="-1" Pp="-1" x="109.5" y="120" style="custom" color="12574559">
 <IDNr>0</IDNr>
 <FunctionType>0</FunctionType>
 <IDName>A</IDName>
 <Description>Description A</Description>
 </Function>
 <Function fnStyle="0" Tp="1" Pp="0" x="328" y="233" fnType="2" style="blue" color="108251">
 <IDNr>1</IDNr>
 <FunctionType>0</FunctionType>
 <IDName>B</IDName>
 <Description>Description B</Description>
 </Function>
 <Function fnStyle="0" Tp="-1" Pp="-1" x="540" y="233">
 <IDNr>2</IDNr>
 <FunctionType>2</FunctionType>
 <IDName>D</IDName>
 <Description>Description C</Description>
 </Function>
 <Function fnStyle="0" Tp="-1" Pp="-1" x="113.5499389648437" y="323.0499923706055">
 <IDNr>3</IDNr>
 <FunctionType>2</FunctionType>
 <IDName>C</IDName>
 <Description>Description C</Description>
 </Function>
 </Functions>

 <Aspects>
 <Aspect x="0.040" y="0.262" directionX="from" directionY="from">
 <Name>1|Bout|2</Name>
 </Aspect>
 </Aspects>

 <Controls>
 <Control>
 <IDNr>1</IDNr>
 <IDName>Aout 2</IDName>
 <FunctionIDNr>1</FunctionIDNr>
 </Control>
 </Controls>

 <Inputs>
 <Input>
 <IDNr>1</IDNr>
 <IDName>Ain</IDName>
 <FunctionIDNr>0</FunctionIDNr>
 </Input>
 <Input>
 <IDNr>2</IDNr>
 <IDName>Aout 1</IDName>
 <FunctionIDNr>1</FunctionIDNr>
 </Input>
 <Input>
 <IDNr>3</IDNr>
 <IDName>Bout</IDName>
 <FunctionIDNr>2</FunctionIDNr>
 </Input>
 <Input>
 <IDNr>4</IDNr>
 <IDName>Cout 3</IDName>
 <FunctionIDNr>1</FunctionIDNr>
 </Input>
 </Inputs>

 <Outputs>
 <Output>
 <IDNr>1</IDNr>
 <IDName>Aout 1</IDName>
 <FunctionIDNr>0</FunctionIDNr>
 </Output>

WWW: www.resolute-eu.org Page 103 of 109
Email: infores@resolute-eu.org

 <Output>
 <IDNr>2</IDNr>
 <IDName>Bout</IDName>
 <FunctionIDNr>1</FunctionIDNr>
 </Output>
 <Output>
 <IDNr>3</IDNr>
 <IDName>Cout 1</IDName>
 <FunctionIDNr>3</FunctionIDNr>
 </Output>
 <Output>
 <IDNr>4</IDNr>
 <IDName>Cout 2</IDName>
 <FunctionIDNr>3</FunctionIDNr>
 </Output>
 <Output>
 <IDNr>5</IDNr>
 <IDName>Cout 3</IDName>
 <FunctionIDNr>3</FunctionIDNr>
 </Output>
 <Output>
 <IDNr>6</IDNr>
 <IDName>Aout 2</IDName>
 <FunctionIDNr>0</FunctionIDNr>
 </Output>
 <Output>
 <IDNr>7</IDNr>
 <IDName>Aout 3</IDName>
 <FunctionIDNr>0</FunctionIDNr>
 </Output>
 <Output>
 <IDNr>8</IDNr>
 <IDName>Cout 4</IDName>
 <FunctionIDNr>3</FunctionIDNr>
 </Output>
 </Outputs>

 <Preconditions>
 <Precondition>
 <IDNr>1</IDNr>
 <IDName>Cout 1</IDName>
 <FunctionIDNr>1</FunctionIDNr>
 </Precondition>
 </Preconditions>

 <Resources>
 <Resource>
 <IDNr>1</IDNr>
 <IDName>Cout 2</IDName>
 <FunctionIDNr>1</FunctionIDNr>
 </Resource>
 <Resource>
 <IDNr>2</IDNr>
 <IDName>Cout 4</IDName>
 <FunctionIDNr>0</FunctionIDNr>
 </Resource>
 </Resources>

 <Times>
 <Time>
 <IDNr>1</IDNr>
 <IDName>Aout 3</IDName>
 <FunctionIDNr>1</FunctionIDNr>
 </Time>
 </Times>

</FM>

Annex V

REST Calls for models.

Request for obtain the list of models saved in the DB (REST request send to the Models resource).

WWW: www.resolute-eu.org Page 104 of 109
Email: infores@resolute-eu.org

GET rest / models /

The result of this call is reported below but it is also available entering in the browser the URI:

http://smartds.disit.org:8080/fram/rest/models.

Figure 86. List of models present in the DB.

REST call for create a new model on server (Request send to the Models resource). The model created is

not saved until the user’s click on the save button.

POST rest / models /

The server’s response is a XML with the data for the new model.

Figure 87. Response to a model creation.

Call for modifying the information (name and description) of an existent model of the currently logged-in

user. The resource that manages this operation is Models.

PUT rest / models / {model_id}

The next request is for get a specific model of the user. The model is identified by its id ({model_id}). Models

is the resource that do this on the server side.

GET rest / models / {model_id}

Below there is the result of this request. It is possible to view this XML by entering in the browser the URI:

http://smartds.disit.org:8080/fram/rest/models/{model_id} , with in place of {model_id} the identifier of an own

model.

http://smartds.disit.org:8080/fram/rest/models
http://smartds.disit.org:8080/fram/rest/models/%7bmodel_id%7d

WWW: www.resolute-eu.org Page 105 of 109
Email: infores@resolute-eu.org

Figure 88. Model returned from the server to the client.

REST call for save a model on the server. The resource that handles this request is Model.

POST rest / modeloperations /

REST call for delete a model on the server. This request is also managed by the class Model.

DELETE rest / models / {models_id}

REST’s calls for operations over the instances.

The resource ModelInstances manages the request to retrieve the list of instances.

GET rest / modelinstances /

The result is reported below and it is accessible on the browser entering the URI:

http://smartds.disit.org:8080/fram/rest/modelinstances.

http://smartds.disit.org:8080/fram/rest/modelinstances

WWW: www.resolute-eu.org Page 106 of 109
Email: infores@resolute-eu.org

Figure 89. List of the instances created.

Below the REST call for an instance creation. The resource that manage this request is ModelInstances and

it creates a new instance on the current section but not in the DB.

POST rest / modelinstances /

REST call for modify the instance’s information (The only available at the moment is the Name). Handled by

ModelInstances.

PUT rest / modelinstances / {model_instance_id}

For delete an instance the call is similar to the previous and is managed by ModelInstances.

DELETE rest / modelinstance / {model_instance_id}

The class ModelInstances manage REST’s call for get a specific instance.

GET rest / modelinstances / {model_instance_id}

Is possible to view the result below directly on the browser, with the URI:

http://smartds.disit.org:8080/fram/rest/modelinstances/{model_instance_id} for an own instance.

http://smartds.disit.org:8080/fram/rest/modelinstances/%7bmodel_instance_id%7d

WWW: www.resolute-eu.org Page 107 of 109
Email: infores@resolute-eu.org

Figure 90. Response for a specific model instance.

Next, the REST calls for saving an instance. The ModelInstances resource manages the request.

POST rest / modelinstanceoperations /

For exporting a model, the REST’s request is handled by the ExportFRAMModelResource resource. The

call is:

POST rest / exportFRAMmodel / {model_id}?OutputNodeId={output_id}

WWW: www.resolute-eu.org Page 108 of 109
Email: infores@resolute-eu.org

REFERENCES

1. Braun, A.; Musse, S.R.; de Oliveira, L.P.L.; Bodmann, B.E.J. (2003). Modeling individual behaviors in

crowd simulation. In: 16th International Conference on Computer Animation and Social Agents, 2003,

143- 148.

2. Hamacher, H., Tjandra, S. (2002). Mathematical modelling of Evacuation Problems: A State of the Art.

Pedestrian and Evacuation Dynamics, 227-266.

3. Rathi, A.K; Solanki, R.S. (1993). Simulation of Traffic Flow during Emergency Evacuations: a

Microcomputer Based Modeling System.In: Simulation Conference Proceedings, (1993), 1250-1258.

4. Borrmann, A., Kneidl, A., Koester, G., Ruzika, S., Thiemann, M. (2012). Bidirectional Coupling of

Macroscopic and Macroscopic Pedestrian Evacuation Models. Safety Science, 50(8), 1695-1703.

5. Reuben, B, Goldblatt, and Kevin Weinisch, Evacuation Planning, Human Factors, and Traffic

Engineering,In: Transportation Research News, Issue 238, p.p. 13-17, May-June 2005.

6. Sheffi, Y., Mahmassani, L., Powell, W. (1982). A Transportaion Network Evacuation Model.

Transportation Research Part A: General, 16(3), 209-218

7. Manley, M. (2012). EXITUS: An Agent-Based Evacuation Simulation Model for Heteroneous

Populations. Ph.D. Thesis, Utah State University. (2012)

8. Aedo, I., Yu, S., Díaz, P., Acuña, P., Onorati, T. (2012). Personalized Alert Notifications and Evacuation

Routes in Indoor Environments. Sensors (Basel), 12(6), 7804–7827.

9. Duan, P., Zhang, H., Xiong, S., Zhou, S., Chen, Z., Yang, P. (2015). Personalized Route Planning

System Based on Wardrop Equilibrium Model for Campus Evacuation. In: 2nd International Symposium

on Dependable Computing and Internet of Things (DCIT),2015, 101-105.

10. Tsekourakis, I., Orlis, C., Ioannidis, D., Tzovaras, D., (2012). A Decision Support System for Real-Time

Evacuation Management and Rescue Team Planning during Hazardous Events in Public Infrastructures,

Mikulski J. (eds) Telematics in the Transport Environment. TST 2012. Communications in Computer and

Information Science, 329, Springer, Berlin, Heidelber

11. J.L. Kennington and R.V. Helgasson, Algorithms for Networks Programming. John Wiley & Sons, 1980.

12. D. Bertsekas and P. Tseng, “Relax-IV: A Faster Version of the Relax Code for Solving Minimum Cost

Flow Problems,”Technical Report P-2276, Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology, Gambridge, Mass., 1994.

13. A.V. Goldberg, “An Efficient Implementation of a Scaling Minimum-Cost Flow Algorithm ”J. Algorithms,

vol 22, pp. 1-29, 1997.

14. Lu, Q., George, B., and Shekhar, S, Capacity Constrained Routing Algorithms for Evacuations Planning:

A summary of Results, SSTD’ 2005, pp. 291-307, 2005.

15. Sangho, K., George, B., and Shekhar, S. Evacuation Route Planning: Scalable Heuristics, ACMGIS ’07,

Seattle, WA, 2007.

16. Hope, B., and Tardos, E., Polynomial time algorithms for some evacuation problems, Society for

Industrial and Applied Mathematics, 1994.

17. Long Shi, Qiyuan Xie, Xudong Cheng, Long Chen, Yong Zhou, Ruifang Zhang, Developing a database

for emergency evacuation model, Building and Environment, Volume 44, Issue 8, Pages 1724-1729,

August 2009.

18. “SAVE ME Crowd Simulation,” Deliverable A5.1, 7th Framework Programme SST.2008.4.1.2. , Contract
N.234027.

19. Angular JS: https://angularjs.org/

20. Bootstrap: http://getbootstrap.com/

21. WebSockets: https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

22. C++ REST SDK: https://github.com/Microsoft/cpprestsdk

23. Leaflet: http://leafletjs.com/

https://angularjs.org/
http://getbootstrap.com/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://github.com/Microsoft/cpprestsdk
http://leafletjs.com/

WWW: www.resolute-eu.org Page 109 of 109
Email: infores@resolute-eu.org

24. Haversine formula: https://en.wikipedia.org/wiki/Haversine_formula

25. iDEPEND EU - Dependency Modelling tool. (n.d.). Retrieved 12 12, 2015, from

http://idependeu.herokuapp.com/

26. CAMBRENSIS. (n.d.). Systemic Interdependency Modelling. Retrieved from

http://www.cambrensis.org/wp-content/uploads/2012/05/Systemic-Interdependency-Modelling-GENSIM-

0.1-docx.pdf

27. Bartolozzi, M., Bellini, P., Nesi, P., Pantaleo, G., & Santi, L. (2015). A Smart Decision Support System

for Smart City. Proc. of the 2015 IEEE International Conference on Smart City, SocialCom, SustainCom,

DataCom 2015 and SC2 2015. Chengdu, Sichuan, China

28. Hill, R. (n.d.). Fram Model Visualizer FMV. Retrieved from the Functional Resonance Analysis Method.:

http://functionalresonance.com/FMV/index.html

29. Bellini, E., Gaitainidou, E., & Fereira, P. (2016). European Resilience Managment Guidelines –

RESOLUTE D3.5 deliverable

30. E. Bellini, P. Nesi, G. Pantaleo and A. Venturi, "Funtional Resonance Analysis Method based-Decision

Support tool for Urban Transport System Resilience Management", in Proc. of the 2nd IEEE

International Smart Cities Conference (ISC2) 2016, Trento (Italy), 12-15 September 2016.

31. Van Kleef, V., & Stop, J. (2014). Reliable, resilient: Towards a dialectic synthesis. 46 th ESReDA

Conference. Torino, Italy.

https://en.wikipedia.org/wiki/Haversine_formula
http://idependeu.herokuapp.com/
http://www.cambrensis.org/wp-content/uploads/2012/05/Systemic-Interdependency-Modelling-GENSIM-0.1-docx.pdf
http://www.cambrensis.org/wp-content/uploads/2012/05/Systemic-Interdependency-Modelling-GENSIM-0.1-docx.pdf

